Page 127 - DMTH202_BASIC_MATHEMATICS_II
P. 127
Basic Mathematics-II
Notes Separating the variables, we get
1 y 1 x
dy dx 0
y x
Integrating both sides, we get
1 y 1 x
y dy x dx c.
or, logy + y + log x + x = a, a constant
or, log xy + x + y = a
which is the required solution.
2 dy dy
x
Example: Solve ( y ) x y xy 1
dx dx
Solution:
Put x + y = u, then differentiating w.r.t. x and y, we get respectively
dy du dy dv
1 and x y
dx dx dx dx
Substituting these values in the given equation,
2 dv du dv du
u v or, 2
dx dx v u
Integrating both sides, we have
dv du 1
C or, log v C
v u 2 u
1 1
or, log xy C or, log xy . C
x y x y
ydx xdy dx
Example: Solve 2
x
( y ) 2 1 x 2
Solution:
( xdy ydx ) dx
2 2
1 y x 2 2 1 x
x
y xdy ydx
Put , v 2 dv .
x x
Substituting these values in the given equation,
dv dx
, Integrating we get
(1 v ) 2 2 1 x 2
1 1 1
sin x c
1 v 2
x 1 1
or, sin x C is the required solution.
y x 2
122 LOVELY PROFESSIONAL UNIVERSITY