Page 127 - DMTH202_BASIC_MATHEMATICS_II
P. 127

Basic Mathematics-II




                    Notes                 Separating the variables, we get
                                                           
                                                   
                                                 1 y      1 x
                                                      dy    dx   0
                                                   y       x
                                          Integrating both sides, we get
                                                   1 y      1 x
                                                    
                                                             
                                                                  
                                                   y  dy     x  dx c.
                                   or,    logy + y + log x + x = a, a constant
                                          or,          log xy + x + y = a

                                          which is the required solution.
                                                           2  dy        dy 
                                                       x
                                          Example:  Solve  (  y )   x   y    xy  1  
                                                             dx         dx 
                                   Solution:
                                   Put x + y = u, then differentiating w.r.t. x and y, we get respectively

                                                    dy  du       dy     dv
                                                 1          and  x   y  
                                                    dx  dx       dx     dx
                                          Substituting these values in the given equation,
                                                    2 dv  du     dv  du
                                                      u   v    or,      2
                                                     dx   dx     v   u
                                          Integrating both sides, we have
                                              dv   du              1
                                                       C   or,  log  v   C
                                              v   u 2              u
                                                      1                1
                                          or,    log xy      C    or,    log xy      . C
                                                     x   y           x   y
                                                       ydx  xdy  dx
                                          Example:  Solve   2  
                                                        x
                                                       (  y )  2 1 x 2
                                   Solution:
                                               
                                            (  xdy ydx )  dx
                                                    
                                                2          2
                                              1   y  x 2  2 1 x
                                              
                                               x
                                       y    xdy  ydx
                                   Put      , v  2   dv .
                                       x       x
                                   Substituting these values in the given equation,
                                                    dv      dx
                                                               ,    Integrating we get
                                                  (1 v ) 2  2 1 x 2
                                                    1    1    1
                                                         sin x c
                                                                
                                                   1 v   2
                                                    
                                                   x   1    1
                                                              
                                   or,                  sin x C    is the required solution.
                                                  y x  2
                                                   
          122                               LOVELY PROFESSIONAL UNIVERSITY
   122   123   124   125   126   127   128   129   130   131   132