Page 125 - DMTH202_BASIC_MATHEMATICS_II
P. 125

Basic Mathematics-II




                    Notes          can be reduced to a form in which the variables are separable by the substitution ax + by + c = u
                                              dy  du
                                   so that  a   b  
                                              dx  dx

                                          dy  1  du  
                                   or             a 
                                          dx  b   dx  
                                   Equation (1) reduces to

                                          1  du  
                                               a       
                                          b  dx  
                                          1  du  
                                   or          a       
                                          b  dx  
                                             du
                                   or              dx .
                                             b
                                          a     u
                                   After integrating both sides, u is replaced by its values.

                                                                                         
                                                        x
                                                                     x
                                                                         2
                                          Example: Solve 3e  tan y dx + (1 + e ) sec y dy = 0, given  y     when x = 0
                                                                                         4
                                   Integrating, we get
                                          3log  1 e x   log tan y   log ,c
                                                   3
                                                             c
                                   or     log    1 e x   tan y    log ,
                                                       
                                             x 3
                                   or     (1 +e )  tan y = c.                                              …(1)
                                   which is the general solution of the given equation.
                                           
                                   Since  y   when x = 0, we have from (1),
                                           4
                                          (1 + 1)   1 = c
                                               3
                                         c = 8
                                    The required particular solution is
                                          (1 + e )  tan y = 8.
                                              x 3

                                          Example:

                                        dy  x 2logx     1
                                   Solve   
                                                 y
                                        dx  siny   cosy
                                   Solution:

                                   The given equation can be re-written as
                                                          (sin y + y cos y) dy = x (2 log x + 1) dx




          120                               LOVELY PROFESSIONAL UNIVERSITY
   120   121   122   123   124   125   126   127   128   129   130