Page 123 - DMTH202_BASIC_MATHEMATICS_II
P. 123

Basic Mathematics-II




                    Notes                                dy
                                          Example: Solve  x  2    y   1
                                                         dx
                                   Solution:

                                          dy
                                              y
                                        2
                                   Here x       1
                                          dx
                                           dy   dx
                                   or           2
                                          1  y  x
                                   Integrating, we get

                                                     1
                                          –log (1 – y) =  + c
                                                     x
                                                    1
                                   or     log (1 – y) =   – c
                                                    x
                                                  1    1
                                                c
                                                       x  where e =A.
                                         1–y =   e    x   Ae ;  -c
                                                  1
                                   or     y =     x
                                             1  Ae
                                   which is the required solution.


                                                                 2
                                          Example: Solve (xy + x)dx+(yx +y)dy = 0.
                                                        2
                                   Solution:
                                            2
                                                      2
                                   Here   x(y +1)dx + y (x +1)dy = 0
                                           xdx   ydx
                                   Or      2     2   0
                                          x   1  y   1
                                   Integrating, we get

                                             1        1
                                                2
                                                            2
                                          log   (x + 1) +  log (y + 1) = c
                                             2        2
                                                     2
                                   or     log (x + 1)+ (y + 1) = 2c
                                              2
                                                       2
                                           2
                                                2
                                   or     (x +1) (y +1) = e e = A, which is the required solution.
                                          Example:
                                        dy   3x 2y  2  2y
                                   Solve    e    x e
                                        dx
                                   Solution:

                                        dy  3x  2y  2  2y
                                   Here    e    x e
                                        dx

                                      2y
                                   or  e dy     e 3x   x 2   dx



          118                               LOVELY PROFESSIONAL UNIVERSITY
   118   119   120   121   122   123   124   125   126   127   128