Page 124 - DMTH202_BASIC_MATHEMATICS_II
P. 124

Unit 9: Solution of Differential Equation




          Integrating, we get                                                                   Notes
                  1  2y  1  3x  x 3
                   e    e     c
                  2    3     3

          or      3e 2y     2 e  3x   x 3    c , where c 1   6c
                                 1
          which is the required solution.


                 Example:

                       2 dy
          Solve     1x y     1
                        dx
          Solution:
          Putting     1x y    u

                   dy  du
          we get  1  
                   dx  dx

             dy  du
          or       1
             dx  dx
          Thus the given equation reduces to

                  u  2  du   1     1
                    
                     dx  

                  du  1  u 2
          or           2
                  dx   u
                   u 2
          or         2  du   dx
                  1  u

                      1  
          or       1    2   du   dx
                    1   u  
          Integrating, we get

                           x
                  u  tan 1  u    c
          or         1x y    tan 1   1x y    x c

                                    ,
          or      y   tan 1    1x y    c  where c  = c – 1
                                   1
                                           1
          which is the required solution.
          Remark:
          Different equations of the form

                        dy
                                   
                              ax by c                                         …..(1)
                               
                        dx

                                           LOVELY PROFESSIONAL UNIVERSITY                                   119
   119   120   121   122   123   124   125   126   127   128   129