Page 40 - DMTH202_BASIC_MATHEMATICS_II
P. 40

Unit 3: Integration by Parts




            e  n  sinx    e n  sinxdx                                                        Notes
                    n
                                
            e  n  sinx   ( cos )e   x    e  n ( cos )dx 
                                    x
            e  n  sinx e n  cosx    e n  cosxdx
                  
            e  n (sinn   cos ) I
                        
                      n
             1
                         x
             e n (sinn   cos )Ans .
             2
                 Example:
                                   x
                         
                
                         1
                1
                           
            1. sin x dx   sin x x    dx
                                  1 x  2
                                   
                       x
                1
                
            x sin x     dx
                      1 x  2
                       
                   1   2x
              
               1
          x  sin x       dx
                   2  1 x  2
                       
                1
                
            x sin x   In   1- x 2    C
                 Example:
             x  2  cos2xdx
             2 sin2x    sin2x
                      x
            x         2 .  dx
                2         2
                       
            x 2       ( cos2 )  ( cos2 )
                            x
                                 
                                      x
             sin2x   x              dx
            2            2         2   
            1         1        sin2x
            x  2  sin2x   x cos2x 
            2         2         4
                 Example:
            In x dx
          Set
          f = ln x; dg = dx
          Deduce

              dx
          df   ;g   x C
                     
               x
          Any value of C can be used here.
          Here and in the other examples, we select C = 0.
          Get

                    In x dx   x  In x    dx
                           x  (In x   1)


                                           LOVELY PROFESSIONAL UNIVERSITY                                   35
   35   36   37   38   39   40   41   42   43   44   45