Page 42 - DMTH202_BASIC_MATHEMATICS_II
P. 42

Unit 3: Integration by Parts




          Deduce                                                                                Notes
                             x
                  df   (n   2)tan sec  n 2  x dx ;g   tan (except for n   2, when df   0).
                                             x
          Use
                    2
                          2
                  tan x   sec x  1
          to rewrite
                               n
                  g df  (n   2) sec x   sec n  2   x  n 2
          Get

                                            
                  G ( ) sec n 2  x  tan x   n   2  G n    G n    2
                      
                    n
                                 
          Reorganize
                         n 
                  n  1 G   sec n 2  x  tan x   n   2   G n    2
                                       
          Iterate this to get
                             1      n   2         (n  2)(n  4)         
                                               2
                                                                    4
            n
          G ( )   sec  n 2  x  tan   x     cos x          cos x    
                             n   1  (n   1)(n   3)  (n   1)(n   3)(n   5)    
          When n is even this discontinues automatically; when n is odd, the outcome is in our table of
          simple trigonometric integrals for n = 1:
          G (1) In (sec x   tan   ) x


                 Example:
          sqrt(1+x )
                 2
          First method
                           2
          To evaluate:    1 x dx
                        
          Substituting
          x = tan y
          You obtain

                               3
                       2
                     
                    1 x dx     sec y dy
                            G (3)
          Using the above example you obtain

                                             y
                       sec y  tan y   In (sec y   tan )
                  G (3) 
                                  2
                                  
                             2
                                       
                       x  1 x   In x   1 x  2 
                          
                  G (3) 
                                 2
          Alternate method by substitution
                           2
          To evaluate:     1 x dx
                        
                                           LOVELY PROFESSIONAL UNIVERSITY                                   37
   37   38   39   40   41   42   43   44   45   46   47