Page 34 - DMGT515_PERSONAL_FINANCIAL_PLANNING
P. 34

Unit 2: Time Value of Money




          2.6.3 Compounded/Future Value of Series of Cash Flows [Annuity]                       Notes

          Illustration 15
          Mr. Bhat deposits each year ` 5000, ` 10000, ` 15000, ` 20000 and ` 25000 in his savings bank
          account for 5 years at the interest rate of 6 per cent. He wants to know his future value of deposits
          at the end of 5 years.
          Solution:
                         4
                                                               1
          CV = 5000(1+0.06) +10000(1+0.06) +15000(1+0.06) +20000(1+0.06) +25000(1+0.06) 0
                                      3
                                                  2
             n
          CV = 5000(1.262)+10000(1.191)+15000(1.124)+20000(1.050)+25000(1.00)
             5
              = 6310 + 11910 + 16860 + 21000 + 25000 = ` 81,080/-
          CV can also be calculated in the following ways.
                         Amount         No. of years   Compound interest
              Year                                                      Future value `
                          paid `       compounded          factor
              (1)          (2)             (3)              (4)          (5) = (2) x (4)

               1          5000              4              1.262            6,310
               2          10,000            3              1.191           11,910
               3          15,000            2              1.124           16,860
               4          20,000            1              1.05            21,000
               5          25,000            0              1.00            25,000
                                    T O T A L                              81,080


          2.6.4 Compound Value of Annuity (Even Cash Flows)

          Illustration 16
          Mr. Ram deposits `  500 at the end of every year, for 6 years at 6 per cent interest. Determine
          Ram’s money value at end of 6 years.

          Solution:
          FV     =       P  (1+I)  + P  (1+I)  + .......... +P (1+I)+P n-n
                              n-1
                                        n-2
             n            1        2              n-1
                                 5
                                                                2
                                                                           1
          FV     =      500(1+0.06) +500(1+0.06) +500(1+0.06) +500(1+0.06) +500(1+0.06)  + 500(1+0.06) 0
                                                      3
                                            4
             6
                 =       500(1.338) + 500(1.262) + 500(1.19) + 500(1.124) + 500(1.060) + 500(1.00)
                 =       669 + 631 + 595.5 + 562 + 530 + 500 = ` 3487.5
          By using table format,
                            Amount          No. of years     Compound
               Year                                                       Future value `
                             Paid `         compounded      interest factor
                1             500               5               1.338        669.00
                2             500               4               1.262        631.00
                3             500               3               1.191        595.50
                4             500               2               1.124        562.00
                5             500               1               1.06         530.00
                6             500               0               1.00         500.00
                                      T O T A L                             3,487.50




                                           LOVELY PROFESSIONAL UNIVERSITY                                   29
   29   30   31   32   33   34   35   36   37   38   39