Page 255 - DECO402_MACROECONOMIC_THEORY_HINDI
P. 255

bdkbZµ24% O;kikj pozQ % ifjHkk"kk ,oa izdkj



               gSA okLro esa O;kikjh osQOky cSad lk[k ij gh fuHkZj ugha djrs cfYd vius lafpr dks"kksa vkSj futh Ïksrksa  uksV
               ls mèkkj&xzg.k }kjk vius O;kikj osQ fy, foÙk dk izcaèk djrs gSaA






            VkLd  O;kikj&pØ lacaèkh fl¼kar osQ ckjs esa vius fopkj O;Dr dhft,A


          24-5  lSE;wYlu dk O;kikj&pØ ekWMy (Samuelson’s Trade Cycle Model)


          izks- lSE;wYlu us ,d vofèk le;i'prk (one period lag) MPC (a) vkSj Rojd (b) osQ fofHkUu ewY; ekudj]
          ik¡p fofHkUu izdkj osQ O;kikj&pØksa ls lacafèkr ,d xq.kd&Rojd ekWMy fu£er fd;k gSA lSE;wYlu ekWMy ;g
          gSµ
                                           Y  = G  + C  +I                            ...(i)
                                            t    t   t  t
          tgk¡ Y  jk"Vªh; vk; (Y) gS] t le; ij tks fd ljdkjh O;; G , mi;ksx O;; C  rFkk izsfjr fuos'k I  dk oqQy
               t                                        t           t             t
          tksM+ gSA
                                              C  = a Y                               ...(ii)
                                               t     t–1
                                           I  = b (C  – C )                          ...(iii)
                                            t     t   t–1
          lehdj.k (2) dk lehdj.k (3) esa izfrLFkkfir djus ls gesa izkIr gksrk gSµ

                                         I  = b (a Y  – a Y )
                                          t      t–1    t–2
                                        I  = b a Y  –  b a Y                         ...(iv)
                                         t      t–1      t–2
                                               G  = 1                                 ...(v)
                                                 t
          lehdj.k (2)] (4) vkSj (5) dks lehdj.k (1) esa izfrLFkkfir djus ls gesa izkIr gksrk gSµ

                                   Y  = 1 + a Y  + b a Y  – b a Y                    ...(vi)
                                     t       t–1      t–1     t–2
                                    = 1 + a (Y  + b a Y ) – b a Y
                                            t–1      t–1      t–2
                                     = 1 + a  (1 + b ) Y  – b a Y                   ...(vii)
                                                    t–1     t–2
          lSE;wYlu osQ vuqlkj] ¶;fn gesa nks vofèk;ksa dh jk"Vªh; vk; Kkr gks] rks vxyh vofèk dh jk"Vªh; vk;] Hkkfjr
          tksM+ (weighted sum) ysdj] vklkuh ls fudkyh tk ldrh gSA Hkkj] fuLlansg] lhekar miHkksx izo`fÙk osQ lkFk
          lacaèk osQ pqus x, ewY;ksa ij fuHkZj djsaxsA ;g ekudj fd lhekar miHkksx izo`fÙk dk ewY; 'kwU; ls vfèkd vkSj
          ,d ls de (0 < a < 1) ,oa Rojd dk ewY; 'kwU; ls vfèkd (b > 0) gS] lSE;wYlu ik¡p izdkj osQ pØh;
          mrkj&p<+ko dh O;k[;k djrk gS ftudk lkjka'k rkfydk 1 esa fn;k x;k gSA¸

          fLFkfr 1 lSE;wYlu osQ pØh; iFk (cycleless path) dks O;Dr djrh gS D;ksafd ;g osQoy xq.kd izHkko ij
          vkèkkfjr gS vkSj Rojd blesa dksbZ dk;Z ugha djrkA bls fp=k 24-2 (A) esa fn[kk;k x;k gSA
          fLFkfr 2 ifjeafnr pØh; iFk (damped cyclical path) dks O;Dr djrh gS] tks LFkSfrd xq.kd Lrj osQ fxnZ
          mrjrk p<+rk gS vkSj èkhjs&èkhjs ml Lrj rd cSB tkrk gS tSlk fd fp=k 24-2 (B) esa fn[kk;k x;k gSA






                                            LOVELY PROFESSIONAL UNIVERSITY                                   249
   250   251   252   253   254   255   256   257   258   259   260