Page 179 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 179

VED1
          E L-LOVELY-H math11-1     IInd  21-10-11     IIIrd  24-1-12     IVth  21-4-12     Vth  20-8-12     VIth 10-9-12






          Hitesh Jhanji, Lovely Professional University                    fJekJh^11 L gqshpzX T[uso ns/ fBwBso

                              fJekJh^11L gqshpzX T[uso ns/ fBwBso                                 B'N

                               (Constrained Maxima and Minima)


                ftP/ t;s{ (Contents)

                T[d/P (Objectives)
                gq;sktBk (Introduction)

                   11H1  bkG nfXeheoD (Profit Maximization)
                   11H2  jkBhg{oe wzr cbB (Compensated Demand Function)
                   11H3  ;koKP (Summary)

                   11H4  Ppde'P (Keywords)
                   11H5  nfGnk; gqPB (Review Questions)

                   11H6  ;zdoG g[;seK (Further Readings)

                T[d/P (Objectives)
                fJ; fJekJh d/ nfXn?B s'A pknd ftfdnkoEh :'r j'Dr/L

                    •   bkG nfXeheoD B{z ;wMD ftZu.
                    •   jkBhg{oe wzr cbB dh ikDekoh gqkgs eoB bJh.

                gq;sktBk (Introduction)
                wzB fbU fJZe cow d' T[sgkd Q 1  ns/ Q 2  dh wksok q 1  ns/ q 2  dk eq: eqwnB[;ko p 1  ns/ p 2  dh
                ehws T[Zs/ eq: eodh j? sK nifjh dPk ftZu e[ZbQ nkrw j't/rk^
                                             R = p 1 q 1  = p 2 q 3                                                                        ....(1)
                wzB fbU cow dk fJZe fBors (Input) d[nkok d' T[sgkdK (Output) θ 1  ns/ θ 2  dk T[sgkd eodh
                j?. nfijh dPk ftZu X d/ ;zdoG ftZu cow d/ d' T[sgkd dh bkrs (x), q 1  ns/ q 2  dk cbB
                j't/rk. Gkt

                                             x = h (q 1 , q 2 )                                                                           ....(2)
                nfijh dPk ftZu fJZe cow dh nkrw B{z tZX s'A tZX eoB d/ bJh e[ZbQ nkrw ns/ cbB B{z b?D s/
                                                             V = p 1 q 1  = p 2 q 2  + µ [x – h (q 1 q 2 ) σ]                                        ....(3)
                fJZE/ µ b/Aro/Ai r[De j?. ;wheoD (1) dk nzfPe fBy/VB eoe/ Iho' d/ pokpo oZyD s/
                                     ∂ V
                                                          = p 1  – µh 1  = 0
                                      q ∂
                                       1
                                     ∂ V
                                           = p 2  – µh 2  = 0                                                                       ....(4)
                                      q ∂
                                       2
                                     ∂ V
                                                          = x – h (q 1 ,q 2 )= 0
                                     ∂µ


                                           LOVELY PROFESSIONAL UNIVERSITY                                               173
   174   175   176   177   178   179   180   181   182   183   184