Page 274 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 274

VED1
          E L-LOVELY-H math18-1     IInd  6-8-11     IIIrd  24-1-12     IVth  21-4-12     Vth  20-8-12     VIth  10-9-12





           noEPk;soh dk rfDs


                     B'N


                                B'N;         ;zfynktK  a 11 ,  a 12 ,  ...............  w?fNqe; d/ xNe iK  ;zxNe  (Elements  or
                                            Constituents) ejkT[AdhnK jB.

                               fyfsi  (Horizontal)  ;zxNeK d[nkok gzesh  (Row)  ns/ yVQt/A  (Vertical)  ;zxNeK Bkb ;szG
                               (Column) pDd/ jB. fi;B{z^


                                            fJZe nkfJskeko ftB:k; jB fi; ftZu 2 gzeshnK ns/ 3 ;szG jB ns/ 2 ×
                               3 & 6 ;zxNeK dhnK ;zfynk jB.



                               fJ;h soQK    fJZe nkfJskeko ftB:k; j? fi; ftZu 3 gzeshnK ns/ 1 ;szG j? ns/


                               gqt/PK (Entries) dhnK ;zfynktK 3 × 1 & 3 jB.

                               18H1 w?fNqae; dk eqw iK ftwktK (Order of Matrix)
                               fit/A nkfJskeko (Rectangle) dhnK d' ftwktK bzpkJh ns/ u"VkJh j[zdhnK jB T[;h soQK w?fNqe;
                               dhnK ftwktK gzeshnK dh ;zfynk  ;szGK dh ;zfynk j[zdh j?. gfoGkPk ftZu fdZs/ j'J/ w?fNqe; B{z
                               A, B, C nkfd Bkb ;ze/s eod/ jB. fit/A A m×n . B 2×3 . C 1×3  nkfd.

                               18H2 w?fNqe; dk ;ze/sB (Notation of a Matrix)
                               i/eo fe;h th w?fNqe; ftZu gzeshnK ns/ ;szGK dhnK ;zfynktK m ns/ n j'D, sK nkfJskeko
                                                                                   th
                                                                                               th
                               ftB:k; ftZu e[ZbQ m × n ;zxNeK dh ;zfynk j't/rh. w?fNqe; dh i  gzesh ns/ j  ;szG ftZu
                               ;zxNeK dh ;fEsh a ij  j't/, sK w?fNqe; B{z j/m nB[;ko fbfynk iKdk j?^
                                                                      A m×n  = A = [a ij ] m×n
                               fiZE/, i = 1, 2, 3, ...., m ns/ j = 1, 2, 3, ...., n j?.



                               eh s[;hA ikDd/ j'    fJZE/ fJj T[b/y:'r j? fe w?fNqe; ;zfynktK dk nkfJskeko ftB:k; (ftP/P
                                              ;zrms ns/  ;zy/ge o{g ftZu fby/ j'J/) wkso jB. fJjBK dk e'Jh
                                              ;zfynkswe wkB BjhA j?.


                               18H3 t:{j d/ gqeko (Kinds of Matrix)

                               [I] tor w?fNqe; (Square Matrix)

                               i/eo fe;h wfNqe; ftZu gzeshnK ns/ ;szGK dh ;zfynk pokpo j? T[d'A T[;B{z tor w?fNqe;
                               efjzd/ jB. Gkt i/eo m = n j't/ sK nze nkfJs B{z n eqw dk tor t:{j efjzd/ jB. j'o t:{j
                               fiZE/ j'D T[j nkfJskeko t:{j ejkT[Ad/ jB. T[dkjoD ti'A,




           268                                             LOVELY PROFESSIONAL UNIVERSITY
   269   270   271   272   273   274   275   276   277   278   279