Page 278 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 278

VED1
          E L-LOVELY-H math18-1     IInd  6-8-11     IIIrd  24-1-12     IVth  21-4-12     Vth  20-8-12     VIth  10-9-12





           noEPk;soh dk rfDs

                     B'N       2H w?fNqe;K d/ ;ws[b ;zpzX (Equivalence Relations of Matrices)
                               i/eo A, B, C w?fNqe; nB[e[bB (Conformable) jB Gkt ;wkB eqw (Order) j?l sK

                                    (i) A = A; ;ws[b ;zpzX (Reflexive Relation)
                                   (ii) A = B  ⇔  B = A  ⇒  ;wfws ;zpzX (Symmetric Relations)
                                  (iii) A = B ns/ B = C  ⇒  A = C; ;zeqkwe ;zpzX (Transitive Relation)
                               fiZE/, ;ze/s (Notation)  ⇒  i/eo HHHH sK (If....then) ns/  ⇔  i/eo ns/ e/tb i/eo (iff = if
                               and only if)
                                    (T) A = A dk noE j? a ij  = a ij  fiZE/ i = 1, 2, 3, ....m ns/ j = 1, 2, 3, ....., n. fJZe ;t?s[b
                               ;zpzX ejkT[Adk j?.
                                    (n) A = [a ij ] m×n  ns/ B = [b ij ] m×n  jB sK A = B dk noE j? a ij  = b ij  iK b ij  = a ij . fJ;
                               bJh bJh B = A.

                               ∴   A = B  ⇒  B = A fJ;B{z ;wfws ;zpzX efjzd/ jB.
                                    (J) i/eo A = B, fJ;B{z B= C ;wfws ;zpzX efjzd/ jB^
                                                                          a ij  = b ij   ns/ b ij  = c ij

                               fJ; soQK                   a ij  = c ij     ∴   A = C
                               w?fNqe;K  A, B, C  ftZu T[j  ;zpzX j?, fijV/ ;t?s[b,  ;wfws  ns/ ;zeqkwe j't/, s[bsk ;zpzX
                               ejkT[Adk j?. T[dkjoD ti'A^

                               s[b w?fNqe; dh gfoGkPk d[nkok x, y ns/ z dk wkB

                               fJ; soQK d' s[b w?fNqe;K d/ ;zrs ;zxNe s[b j[zd/ jB.
                               ∴   x + 3 = 0; 2y + x = –7; z – 1 = 3 ns/ 4a – 6 = 2a
                               fJBQK ;wheoDK d[nkok x =–3; y = –2; z = 4 ns/ a = 3H

                               18H5 t:{jK dk :'r ns/ nzso (Addition and Subtraction of Matrices)

                               i/eo A = [a ij ] ns/ B = [b ij ] d' m × n eqw d/ w?fNqe; jB, T[d'A T[jBK dk :'rcb A + B n;hA
                               eqw m × n w?fNqe; C = [c ij ] d[nkok do;kT[Ad/ jB.
                               fiZE/ c ij  = b ij , i = 1, 2, ......, m; j = 1, 2, ......., n ;ko/ wkBK d/ bJh.
                               fJZE/ fJj T[by:'r j? fe i/eo w?fNqe; ;wkB eqw d/ BjhA jB sK T[jBK dk :'rcb ;zGt
                               BjhA j?.
                               T[dkjoD 1H wkB eZY' (Evaluate)^













           272                                             LOVELY PROFESSIONAL UNIVERSITY
   273   274   275   276   277   278   279   280   281   282   283