Page 275 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 275
VED1
E L-LOVELY-H math18-1 IInd 21-10-11 IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12
fJekJh^18 L t:{j (w?fNqe;) L noE ns/ gqeko
12 3 B'N
23
=
A B =− 2 4 0
− 17
72 5
T[go'es d'B'A t:{j tor w?fNqe; jB fiBQK d/ eqw (2 × 2) ns/ (3 × 3) jB.
[II] gzesh w?fNqe; (Row Matrix)
i/eo m = 1, T[d'A w?fNqe; ftZu e/tb fJZe gzesh oj/rh, fJ;B{z gzesh w?fNqe; ejKr/. T[dkjoD
ti'A^
A = [2 3] 1×2
B = [–5 2 0] 1×3
C = [1 3 0 –7] 1×4
[III] ;szG w?fNqe; (Column Matrix)
i/eo n = 1, T[d'A w?fNqe; ftZu e/tb fJZe ;szG oj/rk ns/ gzeshnK dhnK ;zfynktK eJh, fJ;B{z
;szG w?fNqe; ejKr/. T[dkjoD ti'A,
1
2
1 2
A = ,B =− 1 ,C =
3
4
21 ×
0 31 ×
7
41 ×
[IV] Iho' w?fNqe; (Null Matrix or Zero Matrix)
i/eo fe;h w?fNqe; d/ ;ko/ ;zxNe Iho' j'D, sK T[j Iho' w?fNqe; ejkT[Adk j?. T[dkjoD ti'A,
000
0 00
=
A [ ] 0 , B = , C = , D = 000
0
0
00 000
T[go'es ;ko/ Iho' w?fNqe; jB. Iho' w?fNqe; B{z O tZv/ (Capital) nZyo Bkb fbfynk iKdk j?. O
Iho' BjhA j?, fJj e/tb w?fNqe; dk ;ze/s j?.
[V] ss;we iK fJekJh w?fNqe; (Identity or Unit Matrix)
fJj fJZe tor w?fNqe; j? fi;d/ ;ko/ fteoD ;zxNe (Diagonal Elements) fJekJh jB ns/ j'o
;zxNe Iho' jB. fJ;B{z ss;we iK fJekJh w?fNqe; efjzd/ jB. T[dkjoD ti'A,
1 000
10 0
10 0 10 0
A = ; B = 0 1 0 ; C =
01 0 01 0 01 0
000 1
[VI] fteoD w?fNqe; (Diagonal Matrix)
i/eo fe;h tor w?fNqe; d/ gqw[Zy fteoD T[Zs/ ;fEs ;zxNeK B{z Szve/ pkeh ;ko/ Iho' jB, T[d'A
T[;B{z fteoD w?fNqe; efjzd/ jB. T[dkjoD ti'A,
000
d
400 1
00
20 0 d
A = ; B = 0 − 3 0; C = 2
0
03 0 01 00 d
3
000 d 4
;zy/g ftZu fJ;B{z fteoD [d 1 , d 2 , d 3 , d 4 ] Bkb do;kT[Ad/ jB.
LOVELY PROFESSIONAL UNIVERSITY 269