Page 277 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 277

VED1
          E L-LOVELY-H math18-1     IInd  21-10-11     IIIrd  24-1-12     IVth  21-4-12     Vth  20-8-12     VIth  10-9-12






                                                                      fJekJh^18 L t:{j (w?fNqe;) L noE ns/ gqeko

                T[go'es t:{j B{z w?fNqae; fteoD :'r = a + b + c j?. tor w?fNqe; A eqw, n × n ftZu w?fNqe;   B'N
                             n
                fteoD :'r &  ∑ a  j?. fiZE/, j = i efjzd/ jB ns/ T[;B{z Tr fbyd/ jB.
                                ij
                             i= 1
                  [XI] ;wfws w?fNqe; (Symmetric Matrix)
                                                            th
                T[j tor w?fNqe; A (eqw n × n), fi;d/ jo/e (i – j)  xNe (;zxNe) d/  bJh a ij  = a ji  j't/,
                ;wfws w?fNqe; ejkT[Adk j?, T[dkjoD ti'A,




                T[go'es w?fNqe; fJZe ;wfws w?fNqe; j? feT[Afe a ij  = a ji  i.e. a 21  = h = a 12 ; a 32  = f = a 23 ; a 22  = b =
                a 22
                  [XII] NKe^;wfws w?fNqe; (Skew-Symmetric Matrix)
                                                          th
                T[j tor w?fNqe; A (eqw n × n), fi;d/ jo/e (i - j)  fiBQK d/ jo/e oue d/ bJh a ji  = a ij  j't/,
                NKe^;wfws w?fNqe; ejkT[Adk j?. T[dkjoD ti'A,



                fteoD ;zxNeK a 11 , a 22 , a 33 , ........, a ij  fJ; soQK j? ns/ gqshpzX a ij  = – a ji  d/ ;ko/ wkBK d/ bJh.
                ∴  2a ij  = 0 or – a ij  = 0
                fJ; bJh NKe^;wfws w?fNqe; d/ ;ko/ fteoD ;zxNe Iho' j[zd/ jB.

                ;t?^w[bKeD (Self Assessment)


                ykbh ;EkBK dh g{osh eo' (Fill in the blanks)^
                   1H  fJZe nkfJskeko nze nkfJs, fi;B{z gzeshnK ns/ ;szGK ftZu ftt;fEs ehsk frnk j't/
                       HHHHHHHHHHHHH ejkT[Adk j?.

                   2H  i/eo fe;h th w?fNqe; ftZu gzeshnK ns/ ;szGK dh ;zfynk m ns/ n j'D, sK nkfJseko
                       nfGnk; ftZu e[ZbQ HHHHHHHHHHHHH ;zxNeK dh ;zfynk j't/rh.
                   3H  i/eo fe;h w?fNqe; ftZu gzeshnK ns/ ;szGK dh ;zfynk pokpo j? sK T[;B{z HHHHHHHHHHHH
                       w?fNqe; efjzd/ jB.
                   4H  i/eo fe;h w?fNqe; d/ ;ko/ ;zxNe Iho' j'D, sK T[j HHHHHHHHHHHH w?fNqe; ejkT[Adk j?.
                   5H  i/eo fe;h B{z w?fNqe; d/ gqw[Zy fteoD T[Zs/ ;fEo ;zxNeK B{z SZv e/ pkoh ;G Iho' jB,
                       T[d'A T[;B{z HHHHHHHHHHHHH w?fNqe; efjzd/ jB.

                18H4 w?fNqe; d/ w[Zy r[D (Important Properties of Matrices)

                1H t:{jK dh ;wkBsk (Equality of Matrix)
                d' w?fNqe; A = [a ij ] m×n , B = [b ij ] p×q  s[b j'Dr/ i/eo d'jK d/ eqw (Order) pokpo j'Dr/ Gkt m = p;
                n = q ns/ a ij  = b ij  j[zd/ jB.




                                           LOVELY PROFESSIONAL UNIVERSITY                                               271
   272   273   274   275   276   277   278   279   280   281   282