Page 279 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 279

VED1
          E L-LOVELY-H math18-1     IInd  21-10-11     IIIrd  24-1-12     IVth  21-4-12     Vth  20-8-12     VIth  10-9-12






                                                                      fJekJh^18 L t:{j (w?fNqe;) L noE ns/ gqeko

                t:{j :'r d/ y/soh r[D (Field properties of Matrix Addition)                       B'N

                (i) d' w?fNqe; fJZe jh eqw d/ (Order) iK nB[ebB (Conformable) jB sK fJBQK d/ i'V s/ gqkgs
                w?fNqe; th fJ;h eqw dk j[zdk j?.
                i/eo A = [a ij ] m × n ; B = [b ij ] m × n  j't/ sK

                                 A + B = C   ⇒    [a ij  b ij ] m × n ; :'r dk ;zuoD r[D (Closure Law)
                (ii) i/eo d' w?fNqe; nB[ebB (;wkB^eqw d/) jB, sK
                A + B = B + A :'r dk eqw^ftfBw/sk r[D (Commutative Law for Addition)

                A + B = [a ij  b ij ] m × n  = [b ij  + a ij ] m × n  = B + A  j't/ sK nB[ebB w?fNqe; dk :'r, eqw ftfBw/ r[D
                dk gkbD eod/ jB.
                (iii)  i/eo fszB w?fNqe; A, B, C nB[ebB jB, sK

                (A + B) + C = A + (B + C) :'r dk ;fjuo r[D (Associative Low for Addition)





                (iv) i/eo A fJZe w?fNqe; m × n eqw dk j? ns/ 0 (Iho') w?fNqe; th T[;h eqw dk j? sK A + 0 = A
                fiZE/, 0 (Iho') w?fNqe; dk :'r ss;we ;zxNe (Identity Element) j?.
                (v) i/eo A fJZe w?fNqe; m × n eqw dk j? ns/ A + (–A) = 0 j't/, sK –A w?fNqe; A w?fNqe; dk
                :'r t:{seqw (Additive Inverse) j[zdk j?.
                d' w?fNqe;K dk nzso (Subtraction of Two Matrices)
                A = [a ij ] m × n ; B = [b ij ] m × n  sK d' w?fNqe;K dk nzso A – B, T[j w?fNqe; C j? fi; ftZu i/eo C =
                [c ij ] m × n  i/eo c ij  = a ij  = b ij
                Gkt c ij  = a ij  + (–b ij )

                d' w?fNqe;K dk nzsol A ns/ B d/ :'iBkswe gqshb'w (Additive Inverse) Gkt A – B i'VB
                s/ fwbdk j?.







                18H6 w?fNqe; r[DB (Matrix Multiplication)

                i/eo A = [a ij ], m × n eqw dk w?fNqe; j? ns/ B = [b ik ], n × p eqw dk w?fNqe; j?, T[d'A A ns/ B
                w?fNqe;K dk r[DB AB = C; fiZE/, C = [c ik ], m × n eqw dk w?fNqe; A j?. Gkt i/eo d' w?fNqe; A
                ns/ B nB[ebB j'D fiBQK ftZu A ;szGK dh ;zfynk B dhnK gzeshnK d/ pokpo j't/, sK d'jK
                w?fNqe;K B{z r[Dk eo ;ed/ jB ns/ r[DB B{z AB d[nkok gqdofPs eod/ jB.
                fJ; soQK w?fNqe; r[DB AB d/ ftnkge gd c ik  B{z gqkgs eoB dh ftXh fJj j?^
                A dh ithA gzesh ns/ B d/ kt/A ;szG d/ ;zrs oueK (;zxNeK) dh r[Dk eoBk s/ fJBQK dk :'rcb
                b?Dk. fJ;B{z gzesh r[fDs ;szG ftXh efjzd/ jB.


                                           LOVELY PROFESSIONAL UNIVERSITY                                               273
   274   275   276   277   278   279   280   281   282   283   284