Page 186 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_ENGLISH
P. 186

Statistical Methods in Economics


                   Notes                                      Table showing calculations

                                         X               Y               X 2            Y 2           XY
                                         6               9               36             81            54
                                         2               11              4             121            22
                                         10              5              100             25            50
                                         4               8               16             64            32
                                         8               7               64             49            56
                                                                                       2
                                       ΣX  = 30        ΣY  = 40       ΣX 2   = 220   ΣY  = 340     ΣXY  = 214

                                  Regression of X and Y :
                                  Let line of regression of Y on X be
                                                             Y= a + bX                                       ... (i)
                                  The normal equations giving the values of a and b are
                                                           ΣY =  Nab                                         ... (ii)
                                                                   +ΣX
                                                          ΣXY =  Σ+ ΣXa  b X 2                              ... (iii)
                                  Putting the values from the table, one gets
                                                            40 = 5a + 30b                                   ... (iv)
                                                           214 = 30a + 220b                                  ... (v)
                                  Multiplying equation (iv) by 6, we get
                                                           240 = 360a + 180b                                ... (vi)
                                  Subtracting (v) from (vi), we have
                                                            26 = – 40b ∴ b = – 0.65
                                  Thus, from (iv), one gets
                                                            40 = 5a – 30 × 0.65 or 5a = 40 + 19.5 ∴ a = 11.9
                                  Putting the values of a and b in (i), the regression of Y on X becomes
                                                             Y = 11.9 – 0.65 X or Y + 0.65 X = 11.9
                                  Regression of X on Y :
                                  Let the line of regression of X on Y be
                                                             X= c + dY                                      ... (vii)
                                  The normal equations giving the value of c and d are
                                                                   +ΣY
                                                           ΣX =  Ncd                                       ... (viii)

                                                          ΣXY =  Σ+ ΣYc  d  Y 2                             ... (ix)
                                  Putting the values in (viii) and (ix), one gets
                                                            30 = 5c + 40d                                    ... (x)
                                                           214 = 40c + 340d                                 ... (xi)
                                  Multiplying equation (x) by 8, we have
                                                           240 = 40c + 320d                                 ... (xii)
                                  Subtracting equation (xii) from equation (xi), one gets





         180                              LOVELY PROFESSIONAL UNIVERSITY
   181   182   183   184   185   186   187   188   189   190   191