Page 187 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_ENGLISH
P. 187

Unit 12 : Linear Regression Analysis : Introduction and Lines of Regression


                                     – 26 = 20d ∴ d = – 1.3                                          Notes
            Putting                    d = – 1.3 in equation (x),
                                      30 = 5c + 40 × (– 1.3) or 5c = 30 + 52 = 82
            ∴                          c = 16.4
            Putting the values of c and d in (vii), the line of regression of X on Y is :
                                       X = 16.4 – 1.3 Y
            ∴                    X + 1.3 Y = 16.4
            Example 2:  Obtain regression lines for the data in example 1 by computing regression coefficients.
            Solution:
            Regression of Y on X :

                                   Computation of regression coefficients
                   X               Y               X 2            Y 2            XY

                   6               9               36             81              54
                   2               11              4              121             22
                   10              5              100             25              50
                   4               8               16             64              32
                   8               7               64             49              56
                                                                  2
                                                  2
                 ΣX  = 30        ΣY  = 40       ΣX  = 220      ΣY  = 340      ΣXY  = 214
                        The line of regression of Y on X using its regression coefficient can be written as :
                                   (  YY ) −  =  YX ( b  − X ) X                       ... (i)


                                            ΣX   30
                        Here,          X  =   N   =   5  = 6

                                            ΣY   40
                                       Y  =   N   =   5   = 8


                                             Σ NXY  ( −  )Σ  (  Y )ΣX
                        and           b YX  =   Σ NX 2  ( −  X )Σ


                                                     ×
                                            5 ×  − 214 30 40
                                          =           2
                                            5 ×    ( − 220  )30
                                            1070  − 1200  −130
                                          =           =      = – 0.65
                                            1100  − 900  200
                        Putting the values of  X Y   and  b YX   in equation (i), one gets the line of regression of
                                          ,
                        Y on X as :
                                    (Y – 8) = – 0.65 (X – 6) or Y = 8 – 0.65 X + 3.9
                        or       Y + 0.65 X = 11.9
                        which is the same as obtained in example 1.






                                             LOVELY PROFESSIONAL UNIVERSITY                                      181
   182   183   184   185   186   187   188   189   190   191   192