Page 189 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_ENGLISH
P. 189

Unit 12 : Linear Regression Analysis : Introduction and Lines of Regression


                                                                                                     Notes
                                               3            0
                                          =  30  +   = 30.5 =  18  +   = 18.0
                                               6            6

                                            ΝΣdd  − ( xy  x  )Σd  (  y ) Σd
                                      b
                                          YX =    2      2
                                                  x  −d  ( Σ N  d x  )Σ
                                            6268 3 0      1608    1608
                                             ×
                                                 −
                                                    ×
                                          =          2  =        =     = 0.4773
                                            6  ×  − 563  () 3  3378  − 9  3369
                                            ΝΣdd    ( −  x  )Σd  (  y ) Σd
                                               xy
                                      b YX =             2
                                                  y 2  −d  ( Σ N  d y ) Σ



                                                    ×
                                             ×
                                                 −
                                            6268 3 0     1608
                                          =          2  =     = 2.00
                                            6134 −  () 0  804
                                             ×
                        Therefore, the regression of Y on X is :
                                   (  YY ) −  =  YX ( b  − X  or (Y – 18) = 0.4773 (X – 30.5)
                                                    ) X
                        or              Y = 18 + 0.4773X – 14.5577
                        or              Y = 0.4773X + 3.4424
                        and regression of X on Y is :
                                   (  −  ) XX  =  YX  ( b  YY  or (X – 30.5) = 2.0 (Y – 18)
                                                    ) −
                        or              X = 30.5 + 2.0Y – 36.0
                        or              X = 2.0Y – 5.50
            Example 4:  In the estimation of regression equations of two variables X and Y, the following
                        results were obtained :
                                                              2
                                                                        2
                                       X = 20,  Y  = 30, N = 10,  ΣX  = 6360,  ΣY  = 9860,  ΣXY  = 5900
                        obtain the two equations.
                                                                  2
                                                        2
            Solution:   Given that :  X  = 20,  Y  = 30, N = 10,  ΣX  = 6360,  ΣY  = 9860,  ΣXY  = 5900
                        ∴             ΣX =  NX  = 10 × 20 = 200;  ΣY  = 10 × 30 = 300

                                            ΝΣXY  ( −  )ΣX  (  )ΣY
                        ∴             b YX  =           2
                                               Σ NX 2  ( −  X )Σ

                                                       ×
                                            10 ×   − 5900 200 300  59000  − 60000
                                          =              2  =
                                             10  ×   ( − 6360  )200  63600  − 40000
                                            −1000
                                          =       = – 0.042
                                            23600

                                            ΝΣXY  ( −  )ΣX  (  )ΣY
                        and           b XY =           2
                                               Σ NY 2  ( −  Y )Σ



                                             LOVELY PROFESSIONAL UNIVERSITY                                      183
   184   185   186   187   188   189   190   191   192   193   194