Page 105 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 105

bdkbZ—7% ekè; fopyu ,oa izeki fopyu




                 (a) lcls igys ml ekè; dks Kkr djrs gSa ftlls ekè; fopyu fudkyuk gksA                 uksV
                 (b) fiQj mlh ekè; ls chtxf.krh; fpÉksa dks NksM+rs gq, fofHkUu ewY;ksa ls fopyu |d| fudky fy;s
                    tkrs gSaA
                 (c) bu fopyuksa dks tksM+ ∑|d| fudky fy;k tkrk gSA
                 (d) fiQj fuEu lw=k dk iz;ksx djrs gSaμ
                                                d
                                                             d
                               ∑|d  |        ∑||           ∑||
                          δ  =   N M  ,  δ x   =   N x  ,  δ  =   N z
                           M
                                                        Z

                              ekè; fopyu xq.kkad fudkyus osQ fy, ekè; fopyu dks lEcfU/r ekè; ls Hkkx
                              ns fn;k tkrk gSA
            mnkgj.k (Illustration) 1:
            fuEu vk¡dM+ksa ls eè;dk ,oa lekUrj ekè; }kjk fopyu vkSj muosQ xq.kkad Kkr dhft,μ
                        47,  50,  58,  45,  53,  59,  47,  60,  49
            gy (Solution):

            lcls igys inewY;ksa dks vkjksgh Øe esa O;ofLFkr djosQ eè;dk ,oa lekUrj ekè; Kkr djrs gSa fiQj ekè;
            fopyu dk ifjdyu djrs gSaA
            ekè; fopyu dk ifjdyuμ

                  Øekad          in ewY;       eè;dk 50 ls fopyu       ekè; 52 ls fopyu
                                                  (fpÉ NksM+dj)           fpÉ NksM+dj
                                                 |d | = |X – M|          |d | = |X – X |
                                                                           x
                                                   M
                    1              45                  5                       7
                    2              47                  3                       5
                    3              47                  3                       5
                    4              49                  1                       3
                    5              50                  0                       2
                    6              53                  3                       1
                    7              58                  8                       6
                    8              59                  9                       7
                    9              60                  10                      8

                   ;ksx            468                 42                     44

                  N = 9            ∑X                ∑|d |                   ∑ ||d X
                                                        M
                              eè;dk ls                          lekUrj ekè; ls
                   Median = Size of G F H N+ 1I J   th  item         X =   ∑ X  =  468   = 52
                                    2 K
                                                                          N
                                                                                9
                                  9+ 1
                                         th
                          = Size of    = 5  item              ekè; fopyu
                                   2



                                                LOVELY PROFESSIONAL UNIVERSITY                                    99
   100   101   102   103   104   105   106   107   108   109   110