Page 141 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 141
bdkbZ—9% lglacaèk% ifjHkk"kk] izdkj ,oa vFkZ'kkfL=k;ksa dh iz;qDr fof/;k¡
(vi) fuEu lw=kksa osQ iz;ksx }kjk lglEcU/ xq.kkad Kkr fd;k tkrk gSμ uksV
Σdxdy –N(X − A )( Y − A )
izFke lw=k r = x y
N . σ x − σ y
bl lw=k }kjk lglEcU/ xq.kkad Kkr djus esa nksuksa Jsf.k;ksa osQ vadxf.krh; ekè; ,oa izeki fopyu Hkh Kkr djus
gksrs gSa vr% blosQ fuEu ljy :iksa dk iz;ksx vf/d mi;qDr ekuk tkrk gSA
Σdxdy –NG Σ F N H J G ΣdxI F N H dyI J K
K
f}rh; lw=k r = L 2 O L 2 O
N M Σ 2 −G Σdx F dxI Σ 2 − M G Σdy F dyI J P
M N N H N K J P × P M N H N K P Q
Q N
Σ Σdx . dy
Σdxdy −
r`rh; lw=k r = N
L Σdx OL Σdy O
2
2
M N M Σdx − ( N ) PM Σdy − ( N ) P Q P
2
2
Q P N M
N . Σ ( dx . Σ− dy )
Σdxdy
prqFkZ lw=k r =
2
2
Σdx −
Σdy −
[ N . Σ 2 ( dx ) ][ N . Σ 2 ( dy ) ]
O;ogkj esa prqFkZ lw=k dk iz;ksx vf/d fd;k tkrk gSA
lw=kksa esa
Σdxdy = dfYir ekè;ksa ls izkIr fopyuksa osQ xq.kiQy dk ;ksxA
2
Σdx = x Js.kh osQ fopyuksa osQ oxZ dk ;ksxA
2
Σdy = y Js.kh osQ fopyuksa osQ oxZ dk ;ksxA
Σdx = x Js.kh osQ fopyuksa dk ;ksxA
Σdy = y Js.kh osQ fopyuksa dk ;ksxA
X , Y = Øe'k% x ,oa y Jsf.k;ksa osQ vadxf.krh; ekè;A
Ax, Ay = Øe'k% x ,oa y Jsf.k;ksa osQ dfYir ekè;A
σx, σy = Øe'k% x ,oa y Jsf.k;ksa osQ izeki fopyuA
N = in ;qXeksa dh la[;kA
mnkgj.k (Illustration) 3: nl fo|k£Fk;ksa us nks fo"k;ksa esa fuEufyf[kr vad izkIr fd,] nksuksa fo"k;ksa osQ izkIrkdksa
osQ eè; lglEcU/ xq.kkad Kkr dhft,μ
Roll No. X Y
1 80 45
2 60 71
3 51 60
4 69 57
5 58 62
6 62 68
LOVELY PROFESSIONAL UNIVERSITY 135