Page 141 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 141

bdkbZ—9% lglacaèk% ifjHkk"kk] izdkj ,oa vFkZ'kkfL=k;ksa dh iz;qDr fof/;k¡




              (vi) fuEu lw=kksa osQ iz;ksx }kjk lglEcU/ xq.kkad Kkr fd;k tkrk gSμ                     uksV
                                    Σdxdy –N(X −  A )( Y −  A )
            izFke lw=k           r =                x       y
                                             N . σ  x  − σ  y

            bl lw=k }kjk lglEcU/ xq.kkad Kkr djus esa nksuksa Jsf.k;ksa osQ vadxf.krh; ekè; ,oa izeki fopyu Hkh Kkr djus
            gksrs gSa vr% blosQ fuEu ljy :iksa dk iz;ksx vf/d mi;qDr ekuk tkrk gSA
                                            Σdxdy –NG  Σ F  N H  J G ΣdxI F  N H  dyI J K
                                                           K
            f}rh; lw=k           r =    L             2 O L              2 O
                                    N M  Σ   2  −G Σdx F  dxI  Σ  2  − M  G Σdy F  dyI J P
                                        M N  N H  N K J P ×  P M  N H  N K  P Q
                                                       Q N

                                                    Σ    Σdx .  dy
                                            Σdxdy −
            r`rh; lw=k           r =                   N
                                      L       Σdx OL          Σdy O
                                                   2
                                                                  2
                                      M N M Σdx −  (  N  )  PM Σdy −  (  N  )  P Q P
                                                          2
                                          2
                                                    Q P N M
                                            N . Σ      ( dx . Σ−  dy )
                                                        Σdxdy
            prqFkZ lw=k          r =
                                                     2
                                                                      2
                                                 Σdx −
                                                                  Σdy −
                                      [ N . Σ  2  ( dx ) ][ N . Σ  2  ( dy ) ]
            O;ogkj esa prqFkZ lw=k dk iz;ksx vf/d fd;k tkrk gSA
            lw=kksa esa
               Σdxdy = dfYir ekè;ksa ls izkIr fopyuksa osQ xq.kiQy dk ;ksxA
                   2
                Σdx  = x Js.kh osQ fopyuksa osQ oxZ dk ;ksxA
                   2
                Σdy  = y Js.kh osQ fopyuksa osQ oxZ dk ;ksxA
                 Σdx = x Js.kh osQ fopyuksa dk ;ksxA
                 Σdy = y Js.kh osQ fopyuksa dk ;ksxA
              X ,  Y  = Øe'k% x ,oa y Jsf.k;ksa osQ vadxf.krh; ekè;A

              Ax, Ay = Øe'k% x ,oa y Jsf.k;ksa osQ dfYir ekè;A
              σx, σy = Øe'k% x ,oa y Jsf.k;ksa osQ izeki fopyuA
                  N = in ;qXeksa dh la[;kA
            mnkgj.k (Illustration) 3: nl fo|k£Fk;ksa us nks fo"k;ksa esa fuEufyf[kr vad izkIr fd,] nksuksa fo"k;ksa osQ izkIrkdksa
            osQ eè; lglEcU/ xq.kkad Kkr dhft,μ
                         Roll No.                X                     Y
                            1                    80                    45
                            2                    60                    71
                            3                    51                    60
                            4                    69                    57
                            5                    58                    62
                            6                    62                    68




                                                LOVELY PROFESSIONAL UNIVERSITY                                   135
   136   137   138   139   140   141   142   143   144   145   146