Page 167 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 167

bdkbZ—10% lglaca/ % fo{ksi&fp=k fof/] dkyZ fi;lZu dk lglaca/ xq.kkad




            (l) fuEu Lrj dk lglEcU/ (Low Degree of Correlation)μtc nks leadekykvksa esa lglEcU/ rks gksrk  uksV
                  gS] ijUrq cgqr gh de ek=kk esa rks ogka fuEu Lrj dk lglEcU/ gksrk gSA ;gka lglEcU/ xq.kkad 'kwU;
                  (0) ,oa .5 osQ eè; gksrk gSA ;g Hkh /ukRed ;k Í.kkRed gks ldrk gSA
                                     lglEcU/ dk ifjek.kμ,d n`f"V esa

             lglEcU/ ifjek.k                   /ukRed (Positive)      Í.kkRed (Negative)
                                             lglEcU/  xq.kkad dk eku  lglEcU/ xq.kkad dk eku
             iw.kZ (Perfect)                         + 1                     – 1
             mPp Lrj dk (High Degree)         + .75 rFkk + 1 osQ eè;  – 1 rFkk – .75 osQ eè;

             eè; Lrj dk (Moderate Degree)      + .5 rFkk .75 osQ eè;  – .75 rFkk – .5 osQ eè;
             fuEu Lrj dk (Low Degree)          + 0 rFkk + .5 osQ eè;   – .5 rFkk 0 osQ eè;
             lglEcU/ dk vHkko (No Correlation)      0 ('kwU;)              0 ('kwU;)

            10-5 dkyZ fi;lZu dk lglEcU/ xq.kkad fudkyus dh fof/ (Method of Calculation

                of Karl Pearson’s Coefficient of Correlation)
            izR;{k jhfr (Direct Method)μlglEcU/ xq.kkad dks fudkyus dh fof/ fuEu gSμ
                                             lg&fopj.k dh eki
            ewy lw=kμ            r =
                                     x
                                                       y
                                                    ×
                                    (dk izeki fopyu) ( dk izeki fopyu)
                                    Σdd /N         Σdd
                                  =    x  y   ;k     x  y                         (izFke lw=k)
                                      σσ y         Nσσ  y
                                       x
                                                      x
            ;gka d  = X – X , X osQ ekè; ls fopyu] d  = Y – Y , Y osQ ekè; ls fopyu
                x                          y
             (1)  nksuksa Jsf.k;ksa dk lekUrj ekè; fudky ysrs gSaA
             (2)  lekUrj ekè;ksa ls nksuksa rRlEcU/h Jsf.k;ksa osQ inksa dk vyx&vyx fopyu fudky ysrs gSaA lkekU;r%
                  igys Js.kh osQ fopyu dks d  vkSj nwljh Js.kh osQ fopyu dks d  dgrs gSaA
                                       x
                                                                 y
             (3)  nksuksa Jsf.k;ksa osQ inksa osQ vkeus&lkeus osQ fopyu dks xq.kk (d  × d ) djosQ mu lcdk ;ksx (Σd d ) izkIr
                                                                y
                                                             x
                                                                                    x y
                  dj ysrs gSaA
             (4)  nksuksa Jsf.k;ksa dk vyx&vyx izeki fopyu (σ  vkSj σ ) fudky ysrs gSaA
                                                    x
                                                          y
             (5)  vc nksuksa Jsf.k;ksa osQ fopyuksa osQ xq.kuiQyksa osQ ;ksx (Σd d ) esa inksa dh la[;k] rFkk igyh Js.kh osQ
                                                           x y
                  izeki fopyu vkSj nwljh Js.kh osQ izeki fopyu osQ xq.kuiQy (Nσ σ ) dk Hkkx nsrs gSaA
                                                                   x y
            izkIr HktuiQy lglEcU/ xq.kkad gksrk gSA
            tgka]  r = lglEcU/ xq.kkad (Stands for coefficient of correlation)
                Σd d  = x vkSj y Js.kh osQ fopyuksa osQ xq.kuiQyksa dk ;ksx (Stands for total of product of correspond-
                  x y
                      ing deviation of x and y series)
                   N = inksa dh la[;k (Stands for Number of pairs of items)
                  σ = x-Js.kh dk izeki fopyu (Stands for Standard Deviation of x-series)
                    x
                  σ  = y-Js.kh dk izeki fopyu (Stands for Standard Deviation of y-series)
                    y






                                                LOVELY PROFESSIONAL UNIVERSITY                                   161
   162   163   164   165   166   167   168   169   170   171   172