Page 209 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 209

bdkbZ—13% lk/kj.k izrhixeu xq.kkad fof/




             (ii)  xq.kuiQy dk oxZewy Kkr fd;k tkrk gSA oxZewy ls izkIr ewY; gh lglEcU/ xq.kkad gksxkμ  uksV
           lehdj.k osQ :i esaμ
                                          r =  bxy × byx

                                                σ     σ y
                                           =  r   x  ×  r
                                                σ y   σ x

                                                2
                                           =  r  = r
           mnkgj.k la[;k 5 esa izrhixeu xq.kkad Øe'k% 2 vkSj 1.8 gSA lglEcU/ xq.kkadμ
                                          r =  .2 ×  . 18


                                           =  .36  = 6 gksxkA
           mnkgj.k (Illustration) 2: fdUgha vk¡dM+ksa osQ fy,
                                         Y = 1.3X rFkk
                                         X = 0.7Y
           nks izrhixeu js[kk,¡ gSaA x o y osQ eè; lglEcU/ xq.kkad fudkfy,A
           gy Solution:                   r = o
           iz'u esa b  = 0.7 rFkk b  = 1.3 gS
                            2
                  1
                                                    .
           vr%                            r =  07. × 13
                                           =  .91 = .95
                                          r = .95

           pwafd lglEcU/ xq.kkad dk ewY; 1 ls vf/d ugha gksrk gS] vr% bxy ,oa byx dk xq.kuiQy Hkh 1 ls vfèkd
           ugha gksxkA ;fn xq.kuiQy 1 ls vf/d gqvk rks mldk oxZewy Hkh 1 ls vf/d gksxk_ vFkkZr~ r dk ewY; 1 ls vf/
           d gksxk tks fd vlEHko gSA b  ,oa b  nksuksa Í.kkRed gksus ij r Hkh Í.kkRed gksxkA
                                       2
                                  1
           mnkgj.k (Illustration) 3: nks js.Me pjksa dk izrhixeu 3X + 2Y – 26 = 0 rFkk 6X + Y – 31 = 0 lehdj.kksa ls
           lwfpr fd;k tkrk gSA  X o Y osQ ekè; rFkk buosQ chp lglEcU/ xq.kkad fudkfy,A
           gy (Solution): (v) lekUrj ekè; ewY;
                                    3x + 2y = 26                                       ...(i)
                                     6x + y = 31                                       ...(ii)

           lehdj.k (i) dks 2 ls xq.kk djus ijμ
                                    6x + 4y = 52                                      ...(iii)
           lehdj.k (ii) dks (iii) esa ls ?kVkus ijμ
                                    6x + 4y = 52
                                     6x + y = 31
                                  –     –  –
                                        3y = 21
           ∴                            y = 7
           lehdj.k (i) esa y eku j[kus ijμ
                                3x + (2 × 7) = 26      or  2x + 14 = 26
                                        3x = 26 – 14   or  3x = 12   ∴   x = 4


                                                LOVELY PROFESSIONAL UNIVERSITY                                   203
   204   205   206   207   208   209   210   211   212   213   214