Page 209 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 209
bdkbZ—13% lk/kj.k izrhixeu xq.kkad fof/
(ii) xq.kuiQy dk oxZewy Kkr fd;k tkrk gSA oxZewy ls izkIr ewY; gh lglEcU/ xq.kkad gksxkμ uksV
lehdj.k osQ :i esaμ
r = bxy × byx
σ σ y
= r x × r
σ y σ x
2
= r = r
mnkgj.k la[;k 5 esa izrhixeu xq.kkad Øe'k% 2 vkSj 1.8 gSA lglEcU/ xq.kkadμ
r = .2 × . 18
= .36 = 6 gksxkA
mnkgj.k (Illustration) 2: fdUgha vk¡dM+ksa osQ fy,
Y = 1.3X rFkk
X = 0.7Y
nks izrhixeu js[kk,¡ gSaA x o y osQ eè; lglEcU/ xq.kkad fudkfy,A
gy Solution: r = o
iz'u esa b = 0.7 rFkk b = 1.3 gS
2
1
.
vr% r = 07. × 13
= .91 = .95
r = .95
pwafd lglEcU/ xq.kkad dk ewY; 1 ls vf/d ugha gksrk gS] vr% bxy ,oa byx dk xq.kuiQy Hkh 1 ls vfèkd
ugha gksxkA ;fn xq.kuiQy 1 ls vf/d gqvk rks mldk oxZewy Hkh 1 ls vf/d gksxk_ vFkkZr~ r dk ewY; 1 ls vf/
d gksxk tks fd vlEHko gSA b ,oa b nksuksa Í.kkRed gksus ij r Hkh Í.kkRed gksxkA
2
1
mnkgj.k (Illustration) 3: nks js.Me pjksa dk izrhixeu 3X + 2Y – 26 = 0 rFkk 6X + Y – 31 = 0 lehdj.kksa ls
lwfpr fd;k tkrk gSA X o Y osQ ekè; rFkk buosQ chp lglEcU/ xq.kkad fudkfy,A
gy (Solution): (v) lekUrj ekè; ewY;
3x + 2y = 26 ...(i)
6x + y = 31 ...(ii)
lehdj.k (i) dks 2 ls xq.kk djus ijμ
6x + 4y = 52 ...(iii)
lehdj.k (ii) dks (iii) esa ls ?kVkus ijμ
6x + 4y = 52
6x + y = 31
– – –
3y = 21
∴ y = 7
lehdj.k (i) esa y eku j[kus ijμ
3x + (2 × 7) = 26 or 2x + 14 = 26
3x = 26 – 14 or 3x = 12 ∴ x = 4
LOVELY PROFESSIONAL UNIVERSITY 203