Page 210 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 210

vFkZ'kkL=k esa lkaf[;dh; fof/;k¡




                    uksV          vFkkZr~ x  = 4 ,oa  y  = 7
                                  (c) x rFkk y dk lglEcU/ xq.kkadμ
                                              6x + y = 31                            or  6x = – y + 31
                                                     − y   31
                                                 x =     +                               x = – .167y + 5.167
                                                      6    6

                                  vFkkZr~ bxy ;k  b = – .167
                                                  1
                                             3x + 2y = 26                            or  2y = – 3x + 26
                                                     − 3x   26
                                                 y =      +                           or  y = – 1.5x + 13
                                                      2     2
                                  vFkkZr~ byx ;k  b = – 1.5
                                                  2
                                                  r =  bxy ×  byx  or  −    × .167  −  . 15

                                                   = –  .2505  = – .5
                                  vFkkZr~ lglEcU/ xq.kkad = – .5





                                          izrhixeu lehdj.k dh rjg izrhixeu xq.kkad Hkh nks gksrs gSaA

                                  13-2 izrhixeu xq.kkad dk ifjdyu (Calculation of Regression Co-efficients)


                                  nks lEc¼ Jsf.k;ksa osQ vyx&vyx pj ewY; fn, gksus ij izrhixeu xq.kkadksa dh x.kuk dks ljy cukus osQ fy,
                                  fuEu fof/;ksa dk iz;ksx fd;k tkrk gS] ;s fof/;k¡ izeki fopyu ,oa lglEcU/ xq.kkad Kkr djus dh jhfr;ksa
                                  ij vk/kfjr gSaA

                                  (1) tc okLrfod vadxf.krh; ekè; ls fopyu fy, x, gksaμtc x.kuk djrs le; fopyu okLrfod
                                  vadxf.krh; ekè; ls fy, x, gksa rks fuEukafdr lw=kksa osQ iz;ksx }kjk izrhixeu xq.kkad dk ifjdyu fd;k tk
                                  ldrk gSμ
                                  X dk Y ij izrhixeu xq.kkad (bxy ;k b )
                                                               1
                                                             σ  x  Σ  dxdy  σ  x                 L        Σ dxdy O
                                                       bxy = r  σ  y  =  n. x y  ×  σ  y         M N pwafd r =  nx y P Q
                                                                   σ
                                                                     σ
                                                                                                             .
                                                                                                          .σσ
                                                            Σdxdy
                                                          =
                                                             .
                                                            ny  2
                                                              σ
                                                                      L           dy O
                                                                                    2
                                                             Σdxdy    M      2  Σ    P
                                                          =    Σdy N   pwafd σy =  n  Q
                                                                   2
                                                            n ×
                                                                 n
                                                            Σdxdy
                                                          =
                                                            Σdy 2
                                  Y dk X ij izrhixeu xq.kkad (byx ;k b )
                                                               2
                                                             σy   Σ dxdy   σy
                                                       byx = r   =       ×
                                                             σ     . σx  . σ xx y  σx
        204                               LOVELY PROFESSIONAL UNIVERSITY
   205   206   207   208   209   210   211   212   213   214   215