Page 212 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 212

vFkZ'kkL=k esa lkaf[;dh; fof/;k¡




                    uksV                                                  ( Σ  Σdx)(  dy)
                                                                  Σdxdy −
                                                                =             N
                                                                        Nσ x 2
                                                                          ( Σ  Σdx)(  dy)
                                                                  Σdxdy −
                                                                =   L   2    Σdx F  N  2 O
                                                                              dxI
                                                                  N M Σ   −G    J P
                                                                                K
                                                                    N M  N  H N   Q P
                                                                          ( Σ  Σdx)(  dy)
                                                                  Σdxdy −
                                                                              N
                                                                =         F ΣdxI  2
                                                                    Σdx −G     J
                                                                       2
                                                                          H N  K
                                                                                 Σ−
                                                                  N.Σ       ( dx )( dy )
                                                                             Σdxdy
                                                                =
                                                                    N.Σ   2  ( dx ) 2
                                                                              Σdx −
                                  lw=k esaμ
                                  Σdxdy = X o Y Js.kh osQ dfYir ekè;ksa ls Kkr fopyuksa osQ xq.kuiQy dk ;ksxA
                                     2
                                  Σdx  = X Js.kh osQ dfYir ekè; ls Kkr fopyuksa osQ oxZ dk ;ksxA
                                     2
                                  Σdy  = Y dh Js.kh osQ dfYir ekè; ls Kkr fopyuksa osQ oxZ dk ;ksxA
                                  Σdx = X Js.kh osQ dfYir ekè; ls Kkr fopyuksa dk ;ksxA
                                  Σdy = Y Js.kh osQ dfYir ekè; ls Kkr fopyuksa dk ;ksxA
                                  izrhixeu xq.kkadksa osQ vk/kj dj izrhixeu lehdj.kksa dks fuEu izdkj O;Dr fd;k tk,xkμ
                                  X dk Y ij izrhixeu lehdj.k

                                         X – X  = bxy (Y – Y ) ;k  X – X  = b  (Y – Y )
                                                                       1
                                  Y dk X ij izrhixeu lehdj.k
                                         Y – Y  = b  (X – X )
                                                 2
                                  mnkgj.k (Illustration) 4: fuEu lkj.kh ls Y dk X ij ,oa X dk Y ij izrhixeu lehdj.k izkIr dhft, ,oa
                                  tc vk;q (X) 50 o"kZ gks rks jDrpki dk vuqeku yxkb,μ
                                                       Age (vk;q)          Blood Pressure (jDrpki)
                                                          (X)                         (Y)

                                                           56                         147
                                                           42                         125
                                                           72                         160
                                                           36                         118
                                                           63                         149
                                                           47                         128
                                                           55                         150
                                                           49                         145
                                                           38                         115
                                                           42                         140
                                                           68                         152
                                                           60                         155


        206                               LOVELY PROFESSIONAL UNIVERSITY
   207   208   209   210   211   212   213   214   215   216   217