Page 211 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 211

bdkbZ—13% lk/kj.k izrhixeu xq.kkad fof/




                                      Σ        Σdxdy  dxdy  Σdxdy                                     uksV
                                    =       =          =
                                       .
                                      nx  2      Σdx 2   Σdx 2
                                        σ
                                              n ×
                                                   n
                                      Σdxdy        Σdxdy
            vFkkZr~              b =   Σdy 2  ;  b  =   Σdx 2
                                  1
                                                2
            Σdxdy = X ,oa Y osQ okLrfod ekè; ls Kkr fopyuksa osQ xq.kuiQy dk ;ksx
               2
            Σdy  = Y Js.kh osQ okLrfod ekè; ls Kkr fopyuksa osQ oxZ dk ;ksx
               2
            Σdx  = X Js.kh osQ okLrfod ekè; ls Kkr fopyuksa osQ oxZ dk ;ksx
            (2) tc dfYir ekè; ls fopyu fy, x, gksμtc okLrfod vadxf.krh; ekè; iw.kk±d esa u gksa rks ,sls le;
            dfYir ekè; ls fopyu Kkr dj izrhixeu xq.kkadksa dk ifjdyu fd;k tkuk pkfg,A dfYir ekè; ls fopyu
            Kkr fd, x, gksa rks fuEu lw=kksa dk iz;ksx fd;k tkuk pkfg,μ
            X dk Y ij izrhixeu xq.kkad
                                             σx
                                      bxy = r
                                             σy

                                                   ( Σ   Σdx)(  dy)
                                            Σdxdy −             σ x
                                          =            N      ×
                                                 N .σσ          σ y
                                                     .
                                                    xy
                                                   ( Σ   Σdx)(  dy)
                                            Σdxdy −
                                          =            N
                                                  N .σ y 2

                                                   ( Σ   Σdx)(  dy)
                                            Σdxdy −
                                          =   L   2    Σdy F  N  2 O
                                                        dyI
                                                          K
                                            N M Σ   −G    J P
                                              N M  N  H N   Q P

                                                   ( Σ   Σdx)(  dy)
                                            Σdxdy −
                                                       N
                                          =         F ΣdyI 2
                                              Σdy −G     J
                                                 2
                                                    H N  K
                                                      Σdxdy −
                                                           Σ
                                           N.Σ        ( dx ) ( dy )
                                          =
                                                        Σdy −
                                              N.Σ   2  ( dy ) 2
            Y dk X ij izrhixeu xq.kkad
                                             σy
                                      byx = r
                                             σx
                                                   ( Σ   Σdx)(  dy)
                                            Σdxdy −             σ y
                                          =            N      ×
                                                 N .σσ          σ x
                                                     .
                                                    xy



                                                LOVELY PROFESSIONAL UNIVERSITY                                   205
   206   207   208   209   210   211   212   213   214   215   216