Page 349 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 349

bdkbZ—24% dky&Js.kh dh fof/ % U;wure oxZ jhfr osQ fl¼kar ,oa mlosQ vuqiz;ksx




            gy (Solution): miufr ewY;ksa (Trend Values) dk vkdyu (y?kq&jhfr)                          uksV
               Year    Employees Dev. 1973   Squares    Product        Trend (T)

                X          Y         X         X 2        XY         Y = a + bX      Y c
               1971       100        – 2        4        – 200   130 + (14 × – 2) =  102
               1972       120        – 1        1        – 120   130 + (14 × – 1) =  116
               1973       130        0          0         0        130 + (14 × 0) =  130
               1974       140        + 1        1        + 140     130 + (14 × 1) =  144
               1975       160        + 2        4        + 320     130 + (14 × 2) =  158
                                               2
               N = 5    ΣY = 650   ΣX = 0    ΣX  = 10                  ΣXY = 140 SYc = 650
                      ΣY   650                     ΣXY   140
                   a =   =      = 130           b =     =     = 14
                      N     5                      ΣX  2  10
            miufr lehdj.k (Trend Equation)—Y = 130 + 14X

            ewwy o"kZ = 1973, X bdkbZ = 1 o"kZ] Y bdkbZ = deZpkjh&la[;k
            1 tqykbZ 1976 dks deZpkfj;ksa dh la[;k dk vuqekuμ
            o"kZ 1976 osQ fy, X = + 3  or  Y = 130 + (14 × 3) = 172

            24-3 le;&bdkb;ksa dh la[;k ;qXe gksuk (Even Number of Time Units)


            tc voyksduksa ;k le;&bdkb;ksa dh la[;k ;qXe gks (tSls 6, 8, 10 ;k 12 vkfn) rks ,slh fLFkfr esa y?kq jhfr
            osQ vUrxZr fopyu osQ fy, X dh bdkbZ vkèks&o"kZ (le;&pØ ok£"kd gksus ij) osQ cjkcj gh eku yh tkrh
            gSA blls fopyu n'keyo (tSlsμ 0.5, – 1.5 rFkk + 0.5, + 1.5 vkfn) esa vk,axs ijUrq x.ku&fØ;k dks ljy
            cukus osQ fy, mUgsa nqxuk dj fy;k tkrk gSA 'ks"k&fØ;k iwoZor~ jgrh gSA mnkgj.k uhps nsf[k,A
            mnkgj.k (Illustration) 5% fuEu vk¡dM+ksa dks U;wure oxZ jhfr }kjk ljy js[kh; miufr iznku dhft, vkSj
            miufr ewY; Kkr dhft,A ifjorZu dh leku&nj ekurs gq, o"kZ 2000 osQ fy, lEHkkO; vk; vuqekfur dhft,μ
            Year              :   1991   1992   1993   1994   1995    1996   1997   1998
            Income (Lakh Rs.)  :   38     40     65     72     69      60     87     95
            gy (Solution): pw¡fd ;gk¡ le;&bdkb;ksa dh la[;k ;qXe (even) gSA vr% ewy&fcUnq (origin) chp osQ nks o"kks±
            (1994 rFkk 1995) dk eè;&o"kZ 1994.5 gksxkA mlls fopyu ysus osQ ckn fopyuksa dks lqfoèkk dh n`f"V ls  nqxuk
            dj fy;k x;k gSA lw=kkuqlkjμ

                              t − (X dk eè; fcUnq )   t − (mid point of X )
                          X =                   ;k  =
                                 / 12  (vUrjky )         / 12 (interval )
            ;gk¡ vUrjky ls vk'k; o"kks± vFkkZr~ X osQ ewY;ksa esa le;≤ (times-difference) ls gS tks ;gk¡ 1 o"kZ gSA vr%
            izFke X (1991) dk eku fuEu gksxkμ
                                                    .
                                     .
                              t − 1994 5  1991 − 1994 5  − 35
                                                          .
            for t = 1991,  X =         =              =      = – 7
                                                         .
                                /
                               12 1)          05        05
                                   (
                                               .



                                                LOVELY PROFESSIONAL UNIVERSITY                                   343
   344   345   346   347   348   349   350   351   352   353   354