Page 351 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 351

bdkbZ—24% dky&Js.kh dh fof/ % U;wure oxZ jhfr osQ fl¼kar ,oa mlosQ vuqiz;ksx




            Solution.  pw¡fd fopyuksa dk ;ksx 'kwU; ugha gS vFkkZr ΣX ≠ 0 vr% ‘a’ rFkk ‘b’ dk eku izR;{k :i ls izlkekU;  uksV
            lehdj.kksa }kjk izkIr fd;k tk,xkμ
                              ljy js[kh; miufr dk fuèkkZj.k (U;wure&oxZ jhfr)

              o"kZ    mRiknu  le;&fopyu    fopyuksa dk   X o Y    miufr ewY;     Y – Y c
                                ewy&1977       oxZ      dh xq.kk  (milkfnr)    (milkfnr)

              Year      Y          X           X 2        XY      a + bX = Y
                                                                           c
               (i)      (ii)      (iii)        (iv)       (v)         (vi)        (vii)
              1973      77        – 4          16        – 308       83.3         – 6.3

              1975      88        – 2           4        – 176       86.0         + 2.0
              1976      94        – 1           1         – 94       87.4         + 6.6
              1977      85         0            0          0         88.8         – 3.8
              1978      91        + 1           1         + 91       90.2         + 0.8

              1979      98        + 2           4        + 196       91.6         + 6.4
              1982      90        + 5          25        + 450       95.7         – 5.7
             N = 7   ΣY = 623     + 1          51        + 159     ΣY  = 623  Σ(Y – Y ) = 0
                                                                     c
                                                                                    c
                   ΣY = Na + bΣX        ΣXY = aΣX + bΣX 2
                                                   2
                    N = 7,  ΣY = 623,    ΣX = 1,  ΣX  = 51,  ΣXY = 159
            nksuksa izlkekU; lehdj.kksa esa ewY; vkfn"V djus ijμ
                                        623 = 7a + b                                   ...(i)
                                        159 = a + 51b                                  ...(ii)
            lehdj.k (ii) dks 7 ls xq.kk djus ij vkSj mls lehdj.k (i) esa ls ?kVkus ijμ
                                        623 = 7a + b                                   ...(i)
                                       1113 = 7a + 357b                               ...(iii)
                                        –       –      –
                                      – 490 = – 356b          ∴  b = 490/356 = 1.38
            ‘b’ dk eku lehdj.k (i) esa vkfn"V djus ijμ

                          623 = 7a + 1.38 ;k  7a = 623 – 1.38 ∴  a = 621.62/7 = 88.803
            vr% ljy js[kh; miufr lehdj.k (Y = a + bX) gSμ
                            Y = 88.803 + 1.38X

                      ewy&fcUnq = 1977, X bdkbZ = 1 o"kZ] Y bdkbZ = gtkj oqQUry
            miufr ewY; (Trend Values of Y ) ifjdfyr djosQ dkWye (vi) esa j[ks x, gSaA
                                     c
                   (ii) miufr dks fujLr ;k i`Fkd djus osQ ckn gekjs ikl pØh;] vkrZo fopj.k rFkk vfu;fer
                      mPpkopu 'ks"k jg tkrs gSa vFkkZr~ O – T = S + C + I
                   (iii) phuh mRiknu dh o`f¼ dh ekfld&nj dk vkx.kuμ
                          ok£"kd o`f¼ ;k b = 1.38 gSA vr% ekfld o`f¼&nj = b/12 ekg

                          1.38/12 = 0.115 gtkj oqQUry ;k 115 oqQUry



                                                LOVELY PROFESSIONAL UNIVERSITY                                   345
   346   347   348   349   350   351   352   353   354   355   356