Page 312 - DMTH401_REAL ANALYSIS
P. 312

Real Analysis




                    Notes                               m*(A) > m*(A  E) + m*(A  E ).
                                                                                 c
                                   The family of all measurable sets is  denoted by  M. We will see later  M  is a  -algebra  and
                                   translation-invariant containing all intervals. The set function m:  M  [0, ¥] defined by

                                                         m(E) = m*(E)  for all E  M
                                   is called Lebesgue measure.
                                   Observe that
                                                 c
                                      E  M  E  M.
                                        M and   M because m*(A) = m*(A  ) + m*(A  ) for all A  .
                                                                                           c
                                                                                c
                                      m*(E) = 0  E M because m*(A  E) + m*(A  E ) = m*(A  E )  m*(A) for all A  .
                                   Proposition: If E , E   M then E  E  M. (Therefore, M is an algebra.)
                                                1  2         1   2
                                   Proof: For all A  R one has
                                                                          c
                                                 m*(A) = m*(A  E ) +m*(A  E )  ( E    M)
                                                                1         1        1
                                                                                         c
                                                                           c
                                                                                             c
                                                       = m*(A  E ) + m*(A  E  E ) +m*(A  E  E )  ( E   M)
                                                                1          1   2         1   2       2
                                                       = m*(A  (E   E )) + m*(A  (E   E ) )
                                                                                     c
                                                                1   2           1   2
                                   because m* is subadditive and
                                            A  (E   E ) = (A  E )  (A  E   E ).
                                                                      c
                                                 1   2        1       1   2
                                     Notes Above proposition can be easily extended to a finite union of measurable sets, in
                                     fact it can be extended to a countable union. In order to do so, we need the following result.
                                   Lemma 1: Let E ,E ,...,E  be disjoint measurable sets. Then for all A  R, we have
                                               1  2  n
                                                   æ   é  n  ö ù  n
                                                m* A    E i ÷  = å  m* (A  E ).
                                                   ç
                                                   è   ê  i 1  úø û  i 1  i
                                                        = ë
                                                                =
                                   Proof: Since E   M, we have
                                              n
                                                        n
                                                                                           n
                                                                                     æ
                                                   æ
                                                                           ù
                                                            ö ù
                                                                       é
                                                       é
                                                                                          é
                                                                  æ
                                                m* A    E i ÷  = m* A   n  E  E n ÷ ö  +  m* A   E  ù   E c ö
                                                                  ç
                                                   ç
                                                                                                  n ÷
                                                                                     ç
                                                   è   ê  i 1  úø û  è  ê i 1  i ú û  ø  è  ê i 1  i  ú û  ø
                                                                                           = ë
                                                                        = ë
                                                        = ë
                                                                             æ
                                                                                   n
                                                                                  é
                                                              = m* (A   E ) +  m* A    E i ÷ ö ù
                                                                             ç
                                                                        n         ê
                                                                             è     i 1  úø û
                                                                                   = ë
                                   Repeat the process again and again, until we get
                                                   æ   é  n  ö ù  n
                                                m* A    E i ÷  = å  m* (A  E ).
                                                   ç
                                                   è   ê  i 1  úø û  i 1  i
                                                        = ë
                                                                =
                                     Notes If {E }   is a sequence of disjoint measurable sets, then
                                              i i
                                                   æ
                                                        ¥
                                                                ¥
                                                       é
                                                            ö ù
                                                m* A    E i ÷  = å  m* (A  E ).
                                                   ç
                                                   è   ê  i 1  úø û  i 1  i
                                                        = ë
                                                                =
                                   This is because for all n   one has
          306                               LOVELY PROFESSIONAL UNIVERSITY
   307   308   309   310   311   312   313   314   315   316   317