Page 312 - DMTH401_REAL ANALYSIS
P. 312
Real Analysis
Notes m*(A) > m*(A E) + m*(A E ).
c
The family of all measurable sets is denoted by M. We will see later M is a -algebra and
translation-invariant containing all intervals. The set function m: M [0, ¥] defined by
m(E) = m*(E) for all E M
is called Lebesgue measure.
Observe that
c
E M E M.
M and M because m*(A) = m*(A ) + m*(A ) for all A .
c
c
m*(E) = 0 E M because m*(A E) + m*(A E ) = m*(A E ) m*(A) for all A .
Proposition: If E , E M then E E M. (Therefore, M is an algebra.)
1 2 1 2
Proof: For all A R one has
c
m*(A) = m*(A E ) +m*(A E ) ( E M)
1 1 1
c
c
c
= m*(A E ) + m*(A E E ) +m*(A E E ) ( E M)
1 1 2 1 2 2
= m*(A (E E )) + m*(A (E E ) )
c
1 2 1 2
because m* is subadditive and
A (E E ) = (A E ) (A E E ).
c
1 2 1 1 2
Notes Above proposition can be easily extended to a finite union of measurable sets, in
fact it can be extended to a countable union. In order to do so, we need the following result.
Lemma 1: Let E ,E ,...,E be disjoint measurable sets. Then for all A R, we have
1 2 n
æ é n ö ù n
m* A E i ÷ = å m* (A E ).
ç
è ê i 1 úø û i 1 i
= ë
=
Proof: Since E M, we have
n
n
n
æ
æ
ù
ö ù
é
é
é
æ
m* A E i ÷ = m* A n E E n ÷ ö + m* A E ù E c ö
ç
ç
n ÷
ç
è ê i 1 úø û è ê i 1 i ú û ø è ê i 1 i ú û ø
= ë
= ë
= ë
æ
n
é
= m* (A E ) + m* A E i ÷ ö ù
ç
n ê
è i 1 úø û
= ë
Repeat the process again and again, until we get
æ é n ö ù n
m* A E i ÷ = å m* (A E ).
ç
è ê i 1 úø û i 1 i
= ë
=
Notes If {E } is a sequence of disjoint measurable sets, then
i i
æ
¥
¥
é
ö ù
m* A E i ÷ = å m* (A E ).
ç
è ê i 1 úø û i 1 i
= ë
=
This is because for all n one has
306 LOVELY PROFESSIONAL UNIVERSITY