Page 313 - DMTH401_REAL ANALYSIS
P. 313

Unit 26: Lebesgue Measure




                          æ
                                          æ
                                              é
                              é
                                    ö ù
                        m* A   ¥ = ë  E i ÷   m* A   n  E i ÷ ö ù                          Notes
                                          ç
                          ç
                                              ê
                              ê
                          è
                                          è
                                                   úø û
                                   úø û
                                               = ë
                               i 1
                                               i 1
                                        n
                                      = å  m* (A   E ).
                                                 i
                                        =
                                       i 1
          Letting n  ¥ lead to
                          æ   é  ¥  ö ù  ¥
                        m* A    E i ÷   å  m* (A   E ).
                          ç
                          è   ê i 1  úø û  i 1   i
                                = ë
                                        =
          The opposite inequality follows from countable subadditivity.
          Theorem 4: Let  { } n  be a sequence of measurable sets, then E =   ¥ i 1 E is also measurable.
                        E
                                                                   =
                                                                      i
                         i
          Moreover, if E ,E ,... are disjoint then m(E) =  å ¥ i 1 m(E ).
                      1  2                      =    i
          This is called the countable additivity which can be proved by putting A = 
          Proof: We first assume E ,E ,...are disjoint. Then for all A  R, n   we have
                             1  2
                                                         æ
                                                   ö ù
                                              é
                                          æ
                                m*(A) = m* A   n  E i ÷ +  m* A   n  E  c ö
                                          ç
                                                                 i
                                          è   ê i 1  úø û  ç è  ( ) ÷ ø
                                               = ë
                                                              i 1
                                                              =
                                        n
                                                           c
                                                  +
                                       å  m* (A   E ) m* (A  E ).
                                                 i
                                       i 1
                                        =
          Letting n  ¥,
                                        ¥
                                                           c
                                                  +
                                m*(A)  å  m* (A   E ) m* (A  E )
                                                 i
                                        =
                                       i 1
                                                        c
                                     = m*(A  E) +m*(A  E ).
          This proved E is measurable.
          Now, if E ,E ,... are not disjoint, we let
                  1  2
                               F  = E ,  F  = E \F ,  F  = E \(F  F ),
                                1   1    2   2  1    3   3  1   2
          and in general F  = E \  i 1 F for k > 2. Then F , F ,... are disjoint and   ¥  F =   ¥ i 1 E . Since M is
                              k 1
                               -
                                                                    =
                       k   k   =  i            1  2                i 1 i  =  i
          an algebra, F , F ,... are all measurable. So E =   i 1 E =   ¥  F is measurable.
                                                 ¥
                                                        =
                     1  2                         =  i  i 1 i
             Notes M is  proved to be  a  -algebra.  The  next  result  shows that all  Borel  sets are
             measurable.  Recall  that  the family  of Borel sets in    is, by  definition,  the  smallest
             -algebra containing all open subsets of .
          Theorem 5: M contains all Borel subsets of .
          Proof: It suffices to show that (a, ¥)  M for all a   (why?). Let A  . We need to show that
                                m*(A)  m*(A  (–¥, a]) + m*(A  (a, ¥)).
          Without loss of generality, we may assume m*(A) < ¥. For convenience, let A  = A  (–¥, a] and
                                                                        1
          A  = A  (a, ¥). Then we need to show
            2
                             m*(A) +   m*(A ) + m*(A )  for all  > 0.
                                           1       2
                                           LOVELY PROFESSIONAL UNIVERSITY                                   307
   308   309   310   311   312   313   314   315   316   317   318