Page 114 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 114

Unit 10: Residues and Singularities




          6.   Suppose g is analytic and has a zero of order n at z . Show that the function f given by  Notes
                                                        0
                                                 g'(z)
                                            f(z) 
                                                 g(z)
               has a simple pole at z , and  Res f  n.
                                0
                                      z  0 z
          7.   Find :
                                              cosz  dz,
                                              2 
                                            C  z  4
               where C is the positively oriented circle |z| = 6.
          8.   Find :

                                              tanzdz,
                                             C
               where C is the positively oriented circle |z| = 2.

          9.   Find :
                                               1
                                             2    dz,
                                                 
                                            z  z 1
                                           C
               where C is the positively oriented circle |z| = 10.
          Answers: Self  Assessment

          1.   Singular point                   2.  Residue Theorem

          3.   Residue Theorem                  4.  Laurent series
          10.7 Further Readings





           Books      Ahelfors, D.V. : Complex Analysis
                      Conway, J.B. : Function of one complex variable
                      Pati, T. : Functions of complex variable
                      Shanti Narain : Theory of function of a complex Variable

                      Tichmarsh, E.C. : The theory of functions
                      H.S. Kasana : Complex Variables theory and applications
                      P.K. Banerji : Complex Analysis
                      Serge Lang : Complex Analysis

                      H. Lass : Vector & Tensor Analysis
                      Shanti Narayan : Tensor Analysis
                      C.E. Weatherburn : Differential Geometry
                      T.J. Wilemore : Introduction to Differential Geometry

                      Bansi Lal : Differential Geometry.


                                           LOVELY PROFESSIONAL UNIVERSITY                                  107
   109   110   111   112   113   114   115   116   117   118   119