Page 116 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 116

Unit 11: Rouche’s Theorem




          But notice that ’(t) = f’((t))’(t). Hence,                                         Notes

                                   f'(z)    f'( (t))      '(t)
                                              
                                      dz       '(t)dt     dt
                                             
                                  C  f(z)    f( (t))      (t)
          where |n| is the number of times  ”winds around” the origin. The integer n is positive in case
           is  traversed in the positive  direction, and  negative in  case the  traversal is in the negative
          direction.
                                                                f'(z)
          Next, we shall use the Residue Theorem to evaluate the integral     dz.  The singularities of
                                                               C  f(z)
                      f'(z)
          the integrand    are the poles of f together with the zeros of f. Let’s find the residues at these
                      f(z)
          points. First, let Z = {z , z , ..., z } be set of all zeros of f. Suppose the order of the zero z is n. Then
                           1
                              2
                                                                              j
                                                                                 j
                                  K
          f(z) = (z – z) j h(z) and h(z)  0. Thus,
                    n
                   j
                               j
                                    m
                        f'(z)  (z p ) h'(z) m (z p ) m j 1  h(z) (z p )m j
                                
                                                           
                                          
                                               
                                     j
                                             j
                                                 j
                                                              j
                                   j
                        f(z)   =        (z pj) 2m j      .  h(z)
                                          
                              h'(z)    m
                            =          j  .
                               h(z)  (z p ) m j
                                      
                                         j
          Now then,
                               (z) = (z p ) m f'(z)   (z p ) m h'(z)   m ,
                                      
                                           j
                                                        j
                                                   
                                         j
                                                         h(z)
                                                                j
                                            f(z)
                                                     j
          and so
                                        Res f'    (p )   m .
                                         z  j p f  j  j
          The sum of all these residues is
                                       –P = –m  – m  – ... – m j
                                                  2
                                              1
          Then,
                                         f'(z)
                                           dz  2 i(N P);
                                                 
                                                     
                                        C  f(z)
          and we already found that
                                           f'(z)
                                            f(z)  dz  n2 i,
                                                     
                                          C
          where n is the ”winding number”, or the number of times  winds around the origin—n > 0
          means   winds in the positive  sense, and n negative means  it winds in  the negative sense.
          Finally, we have
          n = N – P,
          where N = n  + n  + ... + n  is the number of zeros inside C, counting multiplicity, or the order of
                              K
                    1
                        2
          the zeros, and P = m  + m  + ... + m  is the number of poles, counting the order. This result is the
                          1
                                      J
                               2
          celebrated argument principle.
                                           LOVELY PROFESSIONAL UNIVERSITY                                  109
   111   112   113   114   115   116   117   118   119   120   121