Page 111 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 111

Complex Analysis and Differential Geometry




                    Notes          and so

                                                                       p(z ) p'(z )(z z ) ...
                                                                                       
                                                                           
                                                                                   
                                                                                0
                                                              
                                                        (z) (z z )f(z)   0  q (z )  0
                                                           
                                                                0
                                                                              n
                                                                      q'(z )   2  0  (z z ) ...
                                                                                        
                                                                                    
                                                                                      0
                                                                         0
                                   Thus, z  is a simple pole and
                                        0
                                                                            p(z )
                                                                Resf   (z )   0  .
                                                                         0
                                                                 z  0 z    q'(z )
                                                                               0
                                          Example:
                                   Find the integral :
                                                                      cosz
                                                                      z  1) dz,
                                                                    C  (e 
                                   where C is the rectangle with sides x = ± 1, y = –, and y = 3.
                                   The singularities of the integrand are all the places at which e  = 1, or in other words, the points
                                                                                    z
                                   z = 0, ± 2i, ± 4i,.... The singularities enclosed by C are 0 and 2i. Thus,
                                                              cosz
                                                                          
                                                                                     
                                                              z  1) dz  =  2 i Res f Res f ,
                                                                               
                                                                        
                                                            C  (e           z 0  z 2 i  
                                                                                  
                                                                             
                                                                                   
                                   where
                                                                         cosz
                                                                    f(z)    .
                                                                          z
                                                                         e  1
                                                                                 p(z)
                                   Observe this is precisely the situation just discussed: f(z) =   ,  where p and q are analytic, etc.,
                                                                                 q(z)
                                   etc. Now,
                                                                    p(z)  cosz .
                                                                    q'(z)    e z
                                   Thus,

                                                                       cos0
                                                                 Resf      1,and
                                                                 z 0    1
                                                                  
                                                                cos2 i  e  2p   e 2
                                                                    
                                                          Resf                 cosh 2 .
                                                                                      
                                                           
                                                           z 2 i   e 2 i   2
                                   Finally,
                                              cosz  dz             
                                              z 
                                                        
                                                              
                                                         
                                             e  1   = 2 i Res f Res f 
                                            C              z 0  z 2 i 
                                                            
                                                                 
                                                                  
                                                     = 2i(1 + cosh2)


          104                               LOVELY PROFESSIONAL UNIVERSITY
   106   107   108   109   110   111   112   113   114   115   116