Page 199 - DMTH404_STATISTICS
P. 199

Unit 14: Theoretical Probability Distributions



                                                                                                  Notes
                                      e  m .m r         m r
                             = å  é ë  ( r r  ù û  +  m =  e  m å  +  m
                                     ) 1
                            r= 2          ! r          r= 2  (r   ) 2 !

                                   æ         m 4   m 5    ö
                                     2
                                          3
                             m e=  +   m  m +  m +  +  +   ....
                                   ç                      ÷
                                   è          2!   3!     ø
                                     æ        m 2  m 3    ö
                                       +
                            m m e=  +  2  m  1 m +  +  +   .... =  m m 2
                                                                +
                                     ç                    ÷
                                     è        2!   3!     ø
                                      2
                 Thus, Var(r) = m + m  - m  = m.
                                   2
                 Also standard deviation  s =  m .
            (c)  The values of m , m , b  and b
                              3  4  1    2
                 It can be shown that m  = m and m  = m + 3m .
                                                      2
                                   3         4
                         m 2 3  m 2  1
                    b =  3  =  3  =
                     1
                         m    m    m
                          2
                 Since m is a positive quantity, therefore,  b  is always positive and  hence the Poisson
                                                    1
                 distribution is always positively skewed. We note that   b   0 as m  , therefore the
                                                               1
                 distribution tends to become more and more symmetrical for large values of m.
                             m 4  m +  3m 2     1
                 Further,  b =  =          =  3 +    3 as m  .  This  result  shows  that  the
                          2    2       2
                             m       m          m
                               2
                 distribution becomes normal for large values of m.
            (d)  Mode
                 As in binomial distribution, a Poisson variate r will be mode if

                        P  (r   ) 1   P ( ) r   ( P r +  ) 1

                              P
                 The inequality  (r   ) 1   P ( ) r  can be written as

                        e  m .m r 1  e  m .m r  m
                                           Þ    1     Þ    r   m .... (1)
                         (r   ) 1 !  ! r         r

                 Similarly, the inequality  ( ) r   P (r +  ) 1  can be shown to imply that
                                      P
                             r  m - 1                         .... (2)

            Combining (1) and (2), we can write  m - 1 £ r £ m.
            Case I. When m is not an integer







                                             LOVELY PROFESSIONAL UNIVERSITY                                  191
   194   195   196   197   198   199   200   201   202   203   204