Page 283 - DMTH404_STATISTICS
P. 283

Unit 21: Confidence Intervals



                                                                                                  Notes
                         
                         m n 
                     u     2   
                 =    
                     u' 
                                                        
                                                       m n
                           m       2  n      2         2
                                
                                           
                            (Xi X)    (Yi Y)      
                 =     m   1  n       1              
                           2          2   mn        2
                                    
                                                  
                         
                     (Xi X)   (Yi Y)      (Xi X)  
                                            
                     1         1        (m n)        
                                                     X Y
                                                       
            Now under null hypothesis,   =   = , and t =    follows a Student’s t distributions
                                    1   2
                                                       1  1 
                                                   S     
                                                       n  m 
                                                  u(m   n)
                                               2
            with m + n – 2 degrees of freedom, where S  =
                                                  m   n 2
                                                       
            Thus
                       
                          
                                 
                    (m n 2)mn(X Y)   2
            t  =
            2
                       m        n      2 
                              2
               (m n)  (X  X)    (Y Y) 
                                     
                  
                          i
                       1         1      
            and
                                m n
                                 
                                2
                        1     
            (X, Y) =     2        c
                     1   t   
                            
                       m n 2  
                         
            The likelihood ratio critical region is given by
                                 
                                m n
                                2
                        1     
            (X, Y) =     2        c
                     1   t   
                         
                            
                       m n 2  
            where c is to be determined so that
            Sup P   (X,Y) c      
                 
            
              0
                                             2/
            Since (X, Y) is a decreasing function of t (m + n – 2) we reject H
                                                                0
            if
                                              t 2    2 /(m n)
                                                        
                                                     c
                                          (m  n 2)
                                                

                                             LOVELY PROFESSIONAL UNIVERSITY                                  275
   278   279   280   281   282   283   284   285   286   287   288