Page 285 - DMTH404_STATISTICS
P. 285

Unit 21: Confidence Intervals



                                                                                                  Notes
                                               n
                                                          2
                                                                   2
                                                       2
                                             2
            Under the null hypothesis, since    =   0  (X   ) /  has  a     distribution  (chi-square
                                              ,
                                                           }
                                         2
                                                   i
                                                                   n
                                                          0
                                                1
            distribution with n degrees of freedom). Let    2 n,   be the upper - probability point of   . The
                                                                                   2
                                                                                   n
            test statistic is thus
                                        n
                                               2
                                        (X   )   k1  and hence
                                           i
                                        1
                                             n             2 
                                                     2
                                                        2
                                           
                                     C0 =  X|  (X   ) /   c n,
                                                        0
                                                 i
                                             1              
                                                            2
                                                                    2
                                                               2
            On the other hand, if the alternative hypothesis is H  :   =    (   <   ), then the test statistic is
                                                        2
                                                     1      1  1    0
            and hence
                                             n
                                                    2
                                             (X     k 2
                                                   )
                                                i
                                             1
            where    2   is the lower  -probability point of the   distribution with n degrees of freedom.
                                                       2
                   n,1
                                                                                       2
                   Example 3: Let X , . . . , X  and Y , . . . , Y  be independent random samples from N( ,  )
                                1    m     1     n                                  l  1
                                                                    2
                     2
                                                                                 2
                                                                2
                                                                                     2
            and N( ,   ). We wish to obtain a test statistic for testing H  :    =    against H  :       .
                  2  2                                      0   1   2         1  1   2
                           2
                                           2
                                         ,
                            ,
            Here  =  {( 1 , 2 ,  2 2 ) : –        0,i  1,2}
                                     i
                           1
                                           1
                                                    2
                                                       2
                                                2
                                         ,i
            and   =  {(  ,  ,  2  , 2 ) : –       1,2,       0}
                 0    1  2  1  2     i          1   2
            We shall use     ( 1 ,   , 2 1 , 2 2  ).
            Also L (8 | X, Y)
                  m n    m /2  n /2
                   
                1   2   1     1     1  n    2  1  n       2  
                                                                )
                                     
            =        2     2   exp   2  (X   1 )   2  (Y   2 
                                                            i
                                              i
                2      1      1     2 1  1  2  2  1   
                                                    2
            The maximum likelihood estimates of  ,  ,   2 ,  are respectively
                                            l  2  1  2
                                         1  m          1  n
                                     ˆ     X   X, ˆ    Y   Y
                                      1       i     2      i
                                         m  1         n  1
                                    2   1  m    2    1  n
                                                    2
                                        (X  X) ,     (Y  Y) 2
                                    1        i      2       i
                                       m  1            n  1
                          2
                      2
            Further, if       2 ,  the maximum likelihood estimate of   is
                                                               2
                          2
                      1
                                         1    m        n       2 
                                    2
                                                     2
                                   ˆ       (X   X)    (Y   Y)  
                                                            i
                                                 i
                                         
                                      (m n)   1         1      
                                             LOVELY PROFESSIONAL UNIVERSITY                                  277
   280   281   282   283   284   285   286   287   288   289   290