Page 285 - DMTH404_STATISTICS
P. 285
Unit 21: Confidence Intervals
Notes
n
2
2
2
2
Under the null hypothesis, since = 0 (X ) / has a distribution (chi-square
,
}
2
i
n
0
1
distribution with n degrees of freedom). Let 2 n, be the upper - probability point of . The
2
n
test statistic is thus
n
2
(X ) k1 and hence
i
1
n 2
2
2
C0 = X| (X ) / c n,
0
i
1
2
2
2
On the other hand, if the alternative hypothesis is H : = ( < ), then the test statistic is
2
1 1 1 0
and hence
n
2
(X k 2
)
i
1
where 2 is the lower -probability point of the distribution with n degrees of freedom.
2
n,1
2
Example 3: Let X , . . . , X and Y , . . . , Y be independent random samples from N( , )
1 m 1 n l 1
2
2
2
2
2
and N( , ). We wish to obtain a test statistic for testing H : = against H : .
2 2 0 1 2 1 1 2
2
2
,
,
Here = {( 1 , 2 , 2 2 ) : – 0,i 1,2}
i
1
1
2
2
2
,i
and = {( , , 2 , 2 ) : – 1,2, 0}
0 1 2 1 2 i 1 2
We shall use ( 1 , , 2 1 , 2 2 ).
Also L (8 | X, Y)
m n m /2 n /2
1 2 1 1 1 n 2 1 n 2
)
= 2 2 exp 2 (X 1 ) 2 (Y 2
i
i
2 1 1 2 1 1 2 2 1
2
The maximum likelihood estimates of , , 2 , are respectively
l 2 1 2
1 m 1 n
ˆ X X, ˆ Y Y
1 i 2 i
m 1 n 1
2 1 m 2 1 n
2
(X X) , (Y Y) 2
1 i 2 i
m 1 n 1
2
2
Further, if 2 , the maximum likelihood estimate of is
2
2
1
1 m n 2
2
2
ˆ (X X) (Y Y)
i
i
(m n) 1 1
LOVELY PROFESSIONAL UNIVERSITY 277