Page 284 - DMTH404_STATISTICS
P. 284
Statistics
Notes or
|t| > c
1
where c is so chosen that
1
Let c = t in accordance with the diskbution oft under Ho. Thus, the two sided test
1 m + n – 2, /2
obtained is
(X Y mn
t m n 2, /2
S (m n)
2
Example 2: Let X , . . . , X , be a random sample from N (, ), p is known and > 0, is
1 n
2
unknown. We wish to obtain a test statistic for testing H : – against an alternative H : 2
2
0 0 1
2
2
= ( ).
1
0
We have
1 1 n
P (X) exp 2 (Xi ) 2
n /2
1 (2 ) 2
1 1 1
1 1 n
P (X) exp 2 (Xi ) 2
n /2
0 (2 ) 2
0 0 1
Using Neyman-Pearson Lemma, the test statistic is
P (X)
T(X) = 1 k
P (X)
0
n /2
1 1 n
0 exp 1/2 2 2 (X ) 2
i
1 0 1 1
n
2
)
( 2 0 (X 2 ) k, taking logarithms
1
i
1
n
2
(X 2 ) k , since 2 0 ,under H 1
1
1
i
1
Here k is so determined that
1
P (T,(X) k) =
0
n 2
P 0 (X k 1 =
)
i
1
n 2
2
2
P 0 (X ) / k / 0
1
0
i
1
276 LOVELY PROFESSIONAL UNIVERSITY