Page 284 - DMTH404_STATISTICS
P. 284

Statistics



                      Notes         or

                                                                       |t| > c
                                                                             1
                                    where c  is so chosen that
                                           1
                                    Let c  = t      in accordance with the diskbution oft under Ho. Thus, the two sided test
                                        1   m + n  – 2, /2
                                    obtained is

                                                                (X Y    mn
                                                                  
                                                                               t  m n 2, /2
                                                                                
                                                                                  
                                                                                   
                                                                  S   (m   n)
                                                                                                           2
                                           Example 2: Let X , . . . , X , be a random sample from N (,  ), p is known and   > 0, is
                                                                                           
                                                        1      n
                                                                                        2
                                    unknown. We wish to obtain a test statistic for testing H  :   –    against an alternative H  :  2
                                                                                    2
                                                                                 0      0                    1
                                       2
                                            2
                                    =    (   ).
                                       1
                                            0
                                    We have
                                               1        1  n       
                                     P (X)        exp   2  (Xi   ) 2 
                                                      
                                               n /2
                                      1    (2  )      2
                                               1         1  1      
                                               1        1  n       
                                     P (X)        exp   2  (Xi   ) 2 
                                                      
                                               n /2
                                      0    (2  )      2
                                               0         0  1      
                                    Using Neyman-Pearson Lemma, the test statistic is
                                          P (X)
                                    T(X) =     1    k
                                          P (X)
                                             0
                                           n /2
                                                  1  1   n
                                                
                                       0    exp 1/2   2    2  (X   ) 2
                                                                 i
                                         1         0   1   1
                                              n
                                         2
                                             )
                                                       
                                      (   2 0  (X   2  ) k, taking logarithms
                                         1
                                                  i
                                              1
                                       n
                                                          2
                                       (X    2  ) k , since      2 0  ,under H 1
                                                
                                                          1
                                                  1
                                           i
                                        1
                                    Here k  is so determined that
                                          1
                                            
                                     P (T,(X) k)  = 
                                      
                                      0
                                           n     2   
                                     P  0  (X     k 1   = 
                                                 )
                                              i
                                           1         
                                           n               2 
                                                  2
                                                     2
                                     P  0  (X   ) /   k / 0
                                                         1
                                                     0
                                              i
                                           1                
            276                              LOVELY PROFESSIONAL UNIVERSITY
   279   280   281   282   283   284   285   286   287   288   289