Page 255 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 255

Differential and Integral Equation




                    Notes
                                                         2
                                                                 2
                                          Example 3: Solve: (z    2yz   y ) p + (xy + zx) q = xy   zx.
                                   Solution:
                                   The auxiliary equations are
                                              dx        dy     dz
                                          z 2  2yz y 2  xy zx  xy zx

                                               xdx         ydy      zdz
                                   or       2         2    2           2
                                          xz   2xyz xy   xy  xyz  xyz z x

                                          x dx + y dy + z dz = 0.
                                              2
                                                  2
                                           2
                                          x  + y  + z  = c .
                                                     1
                                   Also from second and third terms,
                                           dy    dz
                                          y z   y z
                                   or     y dy   z dy   y dz   z dz = 0
                                   or     y dy   z dz   (z dy + y dz) = 0

                                           2
                                                2
                                   or     y /2   z /2   yz = c .
                                                         2
                                          The general solution is
                                             2
                                                      2
                                                2
                                                   2
                                                         2
                                           (x  + y  + z , y    z    2yz) = 0.
                                                            2
                                                                2
                                                         2
                                          Example 4: Solve: (y    z    x ) p   2xyq + 2zx = 0.
                                   Solution:
                                   The auxiliary equations are
                                              dx      dy    dz  .
                                          y  2  z  2  x  2  2xy  2zx
                                   From second and third terms,
                                          dy  dz     y
                                                   e
                                                  i
                                                , . .,  c 1 .
                                           y   z     z
                                               2x dx      2y dy  2z dz
                                   Also      2    2    3      2     2  .
                                          2xy   2xz  2x    4xy   4xz

                                          2x dx  2y dy  2z dz  dz  .
                                              x
                                             2 (x 2  y 2  z 2  )  2zx
                                          2x dx  2y dy  2z dz  dz
                                                              .
                                              x  2  y  2  z 2  z








          248                               LOVELY PROFESSIONAL UNIVERSITY
   250   251   252   253   254   255   256   257   258   259   260