Page 258 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 258

Unit 17: Lagrange’s Methods for Solving Partial Differential Equations




                 The general solution is                                                        Notes
                 (x + y + z) = f (xyz)


                 Example 8: Solve: p cos (x + y) + q sin (x + y) = z.
          Solution:
          The auxiliary equations are

                     dx       dy     dz
                                       .
                  cos(x y )  sin(x y )  z
          From first two terms,

                  dy  sin(x y )
                  dx  cos(x y )  .
          Put x + y = t,

                    dy  dt
                  1        ,
                    dx  dx
                  dt
                     1  = tan t
                  dx

                    dt
          or              dx
                  1 tant
                    cost
          or              dt  dx
                  sint  cost
                                       t
                  1 (cost  sin ) (cost  sin )
                            t
          or                             dt  dx
                  2       sint  cost
                  1 cost  sint  1 cost  sint
          or                 dt            dt  x c  1
                  2 cost  sint  2 sint  cost

                      1
                                   t
          or      t /2  log (sint  cos ) x c 1
                      2
          or     (x + y) + log [sin (x + y) + cos (x + y)] = 2x + log k .
                                                        1
                 [sin (x + y) + cos (x + y)] = ae x   y
                       dx dy        dz
          Again                       .
                  sin(x y ) cos(x y )  z
                     dt     dz
          or                  .
                  sint  cost  z

                       dt      dz
          or
                        3       z
                   2 sin    t
                        4




                                           LOVELY PROFESSIONAL UNIVERSITY                                   251
   253   254   255   256   257   258   259   260   261   262   263