Page 256 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 256

Unit 17: Lagrange’s Methods for Solving Partial Differential Equations




                             2
                         2
                      2
                 log (x  + y  + z ) = log z + log c                                             Notes
                                          2
                          2
                   2
                      2
                 (x  + y  + z ) = c z.
                             2
                 The solution is
                               y
                  x  2  y  2  z  2  z  .
                               z
                 Example 5: Solve: (y + z) p + (z + x) q = (x + y).
          Solution:
          The auxiliary equations are

                   dx   dy    dz
                                 .
                  y z  z x   x y

                  dx dy dz   dx dy   dy dz
                  2(x y z )   (x y )  (y z )


                  1
          or       log(x + y + z) =   log c  (x   y)
                  2                  1
          and    log (x   y) = log c  (y   z)
                               2
          Hence the solution is
                                    x y
                 (x   y) (x + y + z) =   f  .
                                    y z


                                 3
                                                3
                                                        3
                                                            3
                                             4
                                      4
                 Example 6: Solve: (y x   2x ) p + (2y    x y)q = 9z(x    y ).
          Solution:
          The auxiliary equations are
                    dx        dy        dz   .
                                 3
                   3
                  y x  2x  4  2y 4  x y  9z x 3  y 3
                           3
                  dy  2y 4  x y .
                       3
                  dx  y x  2x 4
                   dy      dv          dv  2v 4  v
          Put  y  , x     x  ,     v x       3   .
                   dx      dx          dx   v  2

                   dv  2v  4  v v  4  2v
                  x         3
                   dx      v  2

                  v 2  2  dx
          or       4
                  v  v   x






                                           LOVELY PROFESSIONAL UNIVERSITY                                   249
   251   252   253   254   255   256   257   258   259   260   261