Page 259 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 259

Differential and Integral Equation




                    Notes                         3   t
                                   or      log tan         2 logc z .
                                                                2
                                                  8   2
                                                 3   x y
                                          z  2  tan         . b
                                                 8    2
                                   Hence the general solution is

                                                                         3   x y
                                                                    2
                                                            x y
                                          [sin(x y ) cos(x y )]e  z  tan
                                                                         8    2
                                          Example 9: Solve:

                                                  t          t          t
                                          (t y z )   (t z x )   (t x y )   x y   . z
                                                  x          y          z
                                   Solution:
                                   The auxiliary equations are

                                            dx      dy      dz      dt
                                          t y z   t z x   t x y   x y z

                                          dx dy dz dt    dx dt  (dt dt )  dz dt
                                   or
                                           3(x y z t )   (x t )  (y t )  (z t )
                                          log (x + y + z + t) 1/3  =   log c  (x   t)
                                                                1
                                          log (x + y + z + t) 1/3  =   log c  (y   t)
                                                                2
                                   and    log (x + y + z + t) 1/3  =   log c  (z   t)
                                                                3
                                   Hence the solution is
                                            [x + y + z + t] 1/3  (x   t), (x + y + z + t) 1/3  (y   t), (x + y + z + t) 1/3  (z   t)] = 0


                                          Example 10: Solve:
                                            z    z    z     xy
                                          x    y    t    az   .
                                            x    y    t      t

                                   Solution:
                                   The auxiliary equations are

                                          dx  dy  dt    dz
                                                            .
                                           x   y   t     xy
                                                      az
                                                          t
                                   From (1) and (2),

                                          log c x = log y, i.e., y = c x.
                                              1              1
                                   From (1) and (3), t = c x
                                                    2





          252                               LOVELY PROFESSIONAL UNIVERSITY
   254   255   256   257   258   259   260   261   262   263   264