Page 262 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 262

Unit 17: Lagrange’s Methods for Solving Partial Differential Equations




          The general integral is obtained by eliminating   between                             Notes
                 z =  x + {exp. (  /a)} y + f ( )

                                   y
          and    0 = x   {exp. (   /a)}   + f (a)
                                   a

                 Example 2: Find the complete integral of
                  2 2
                       2 2
                 x p  + y q  = z 2
          Solution:
                          X
                     Z
          Now put z = e , x = e , y = e Y
                      z   z  X   z  Y   1  z
                  p        .      .      .
                      x  X   x   Y  x   x  X
                       z
                 xp =    .
                      X
                   Z    Z  z  1  z
          and now        .     .
                   X    z  X  z  X

                        Z
                 xp =  z  .
                       X
          Similarly,

                        Z
                 yq =  z
                       Y
                 The equation becomes

                        2        2
                      Z    2  Z     2
                   2
                  z       z        z
                     X        Y
                      2      2
                    Z     Z
          or                   1.
                    X     Y
          The complete integral is

                 Z = aX + bY + c
                  2
                      2
          where  a  + b  = 1
          i.e.,  log z = a log x    (1 a  2 ) log y c .



                           m
                               2m
                                      n
                                           2n
                                    l
                 Example 3: p  sec  x + z  q  cosec  y = z lm/(m   n) .
          Solution:
                           2
                2
          Put cos x dx = dX, sin  y dy = dY and z  1/(m   n)  dz = dZ.
          Write the given equation as
                             m             n
                   z  1/(m n  )  dz  z  1/(m n  )  z
                         .              .     1
                      2
                    cos x  dx     sin x  y
                                           LOVELY PROFESSIONAL UNIVERSITY                                   255
   257   258   259   260   261   262   263   264   265   266   267