Page 263 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 263
Differential and Integral Equation
Notes which on substitution becomes
Z m Z n
1.
X X
The complete integral is
Z = aX + bY + c
where
m
n
a + b = 1
m n (m n l )/(m n )
and Z .z
m n a
1 1
X (x sin2 ).
x
2 2
1 1
Y (y sin2 ).
y
2 2
2
Example 4: Solve: (y x) (qy px) = (p q) .
Solution:
Put x + y = X, xy = Y
z z X z Y
p . .
x X x Y x
z z
y
.1 . ;
X Y
z z X z Y
q . .
y X y Y y
z z
.1 . .
x
X Y
The given equation by this substitution becomes
z z z z
(y x ) x y y x
X Y X Y
2
z z z z
y x .
X Y X Y
2 2
z z
(y x ) 2 (y x ) 2
X Y
2
z z
or
X Y
256 LOVELY PROFESSIONAL UNIVERSITY