Page 268 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 268

Unit 17: Lagrange’s Methods for Solving Partial Differential Equations




                                                                                                Notes
                      dx
                                X
          and    dX =    , i.e. x = e ,
                       x
          The equation becomes
                      2
                    z         z
                         z z     ,
                    Y         X
                 z = f (X + aY) = f ( ).

                        2
                   2 dz        dz
                  a       z z
                     d         d

                        2
                   2 dz    dz   2
                  a       z    z  0.
                     d     d
                                2 2
                  dz   z  (z 2  4a z  )
                  d        2a 2

                       dz         1
          or                 2     2  d  .
                   z [1  (1 4 )]  2a
                            a
                                2
                       [1  (1 4 ) 1]
                                a
                  log z                 c 1
                             2a 2
                   2
                                  2
                 2a  log z = [   (1 + 4a )   1] [X + aY] + k
                                  2
                         = [   (1 + 4a )   1] (log x + a log y) + k.
                                                    m n l
                 Example 4: Find complete integral of: pq = x y z .
          Solution:

                  x m  1  y n  1
          Put           X ,    Y ,
                  m  1    n  1

                   z   z  X   z   z  Y
                        .   ,      .  ,
                   x   X  x  y   Y   y
                      z  m z      z  n
                  p     x     ,q    y  .
                      x     X     Y

                                           z  z   l
                 The given equation becomes   .  z  ,
                                          X   Y
          which is of the form f (p, q, z) = 0.
                   z  dz dz    z
          Putting       ,    a   ,
                   X  d  dy   d

                  dz  dz  l
                    a      ; z
                  d  d



                                           LOVELY PROFESSIONAL UNIVERSITY                                   261
   263   264   265   266   267   268   269   270   271   272   273