Page 271 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 271

Differential and Integral Equation




                    Notes
                                            Z   Z  z
                                                 .    = zp = P (say)
                                            x   z  x
                                            Z   Z  z
                                                 .    = zq = Q (say)
                                            y   z  y

                                          The given equation becomes
                                                      2
                                           2
                                               2
                                                  2
                                          P  + Q  = x  + y .
                                                      2
                                              2
                                           2
                                                  2
                                          P    x  = y    Q .
                                              2
                                           2
                                                      2
                                                  2
                                   Let    P    x  = y    Q  = a 2
                                                              2
                                               2
                                                   2
                                                                 2
                                   or     P =  (a  + x ) and Q =  (y    a ).
                                                               2
                                                                          2
                                                                       2
                                                           2
                                          dZ = P dx + Q dy =  (x  + a ) dx +  (y    a ) dy
                                             x    2  2  a 2        2  2   y   2  2   a 2       2  2
                                          Z =   (x  a  )  log[x  (x  a  )]  (y   a  )  log[y  (y  a  )] c .
                                             2           2                2          2
                                          Complete integral is
                                                        2
                                                                                2
                                                                      2
                                                                             2
                                           2
                                                                                                  2
                                                    2
                                                 2
                                                                                              2
                                                                                    2
                                                                  2
                                          z  = x  (x  + a ) + a  log [x +  (x  + a )] + y (y    a )   a  log [y + (y    a )] + k.
                                                         2
                                                             2
                                                                2
                                                                   2
                                          Example 3: Solve: (x  + y ) (p  + q ) = 1.
                                   Solution:
                                   Put x = r cos  , y = r sin  ,
                                                          y
                                          2
                                              2
                                                 2
                                   i.e.   r  = x  + y ,   = tan  1  .
                                                          x
                                              z   z  r  z          z  sin  z
                                          p        .      .   cos        .  ,
                                              x   r  x     x       r   r
                                              z   z  r  z          z  cos  z
                                          q        .     .    sin        .  .
                                              y   r  y     y       r   r
                                   On substitution the equation becomes
                                                 2       2
                                               z    1  z
                                           2
                                          r                 1
                                               r   r  2
                                                 2        2
                                               z        z
                                           2
                                   or     r        1
                                               r
                                   which is of the form f  (q, x) = f  (p, y).
                                                    1      2
                                   Putting
                                                2           2
                                              z    2      z
                                           2
                                          r       a   1      ,
                                              r
          264                               LOVELY PROFESSIONAL UNIVERSITY
   266   267   268   269   270   271   272   273   274   275   276