Page 274 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 274

Unit 17: Lagrange’s Methods for Solving Partial Differential Equations




          17.6 Keywords                                                                         Notes

          The geometrical interpretation of the Lagrange’s equation
                                            Pp + Qq = R

          where P, Q and R are functions of Z, is that the normal to a certain surface is perpendicular to a
          line whose direction cosines are in the ratio P : Q : R.
          The subsidiary equations help us in finding the solution of Lagrange’s equation. If u = a, v = b
          where u, v are functions of x, y, z and a, b being arbitrary constants but the statement that   (u, v)
          are solutions of the Lagrange equations.

          17.7 Review Questions

          1.   Solve the following x (y   z) p + y (z   x) q   (x   y) z = 0

          2.   Solve the following p + q = z/a
          3.   Solve the following by Lagrange’s method xzp   yzq = xy
                   2
                2
          4.   p  + q = x + y
          5.   zp =  x
                2 3
          6.   p q  = 1
          Answers: Self  Assessment

          1.   (x + y + z) =    (xyz)

                1  1     1  1
          2.
                x  y     x  z
          3.   z = e y/a  f (x   y)

                          2
                                      2
                              2
          4.     [y + x, log (x  + y  + 2xy + z )   2x] = 0
                          y x
          5.   xyz   3u =     ,
                          x z
                sin z  sinx
          6.         f
               sin y   sin y

          7.   z = ax +  (m 2  a 2 )y + c

                      k
          8.   z = ax +   y + c
                      a
                      a      2
          9.   z = ax +   n  n  4 y + c
                      2
                            2
          10.  z = ax +  1  a  y  + c

          11.  z = ax + by + ab




                                           LOVELY PROFESSIONAL UNIVERSITY                                   267
   269   270   271   272   273   274   275   276   277   278   279