Page 278 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 278

Unit 18: Charpit s Method for Solving Partial Differential Equations




          Any of the integrals of (7) will satisfy (6). The simplest relation involving  p or q or both should  Notes
          be taken and that will be the required relation.

          18.2 Illustrative Examples



                 Example 1: Solve by Charpit s method z = pq.
          Solution:

          Applying Charpit s method,
                                dp   dp        dz         dx  dy    df
                                                                 =
                                p  . 1  q  ( p )( q ) ( q )( p )  q  p  0
          From first two terms,

                  p
                   = c.
                  q

                      2
                 z = cq   or  q =  (z/c) and p =   (cz).
          Now dz = p dx + q dy
                 =  (cz) dx +  (z/c) dy
          z  1/2 dz =  c dx + (1/ c) dy, on integration, we have

          2z 1/2     cx + (y/ c) + b

                                                 2
                                                     2
                 Example 2: Solve by Charpit s method (p  + q ) y = qz.
          Solution:

                       dp         dq              dz         dx      dy    df
                    0 p q )  (p 2  q 2 ) q q )  p (2py ) q (2qy z )  2py  2py z  0
                                      (
                        (
          From first two terms,

                  dp   dq
                   qp  p 2

                               2
                                  2
          or     p dp =   q dq i.e. p  + q  = c
                                   2 2
                                       2
                q   cy/z and p =  (c   c y /z )
                 dz = pd x + q dy
                              2
                          2 2
                     =  (c   c y /z ) dx + cy/z dy
                            2 2 1/2
                        2
          or     z dz = (cz    c y )   dx + cy dy
                  2(z dz cy dy )
          or                  = 2  c . dx,
                    (z 2  cy  2 )
                   2
                       2 1/2
                 (z    cy )   =  c .x b




                                           LOVELY PROFESSIONAL UNIVERSITY                                   271
   273   274   275   276   277   278   279   280   281   282   283