Page 279 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 279

Differential and Integral Equation




                    Notes                 The complete integral is
                                          (z 2  cy  2 ) ( cx b ) 2



                                          Example 3: Solve by Charpit s method:
                                                 2
                                          q = xp + p .
                                   Solution:
                                   Charpit s auxiliary equations are

                                           dp   dq        dz          dx     dy   f
                                                          p
                                          p  0  0     ( p x  2 ) q ( 1)  (x  2 )  1  0
                                                                         p
                                   i.e.   q = c from second term.
                                              2
                                          px + p  = c

                                                       c
                                              x   (x 2  4 )
                                          p =            .
                                                  2
                                                        c
                                               x   (x 2  4 )
                                          dz =            dx + c dy.
                                                   2
                                              x 2  1 x         4c
                                                            c
                                                                             c
                                          z =       .  (x  2  4 )  log{x  (x 2  4 )}  cy b .
                                               4   2 2         4
                                              dp  dy
                                   Aliter.  Also     , i.e., p = ae y
                                               p   1
                                                  2 2y
                                               y
                                          q = axe  + a e
                                               y
                                                      y
                                                            2 2y
                                          dz = ae  dx + axe  dy + a e  dy.
                                                  a  2
                                                     2y
                                               y
                                          z = axe  +   e  + b.
                                                  2
                                          Example 4: Solve by Charpit s method:
                                          (p + q) (px + qy)   1 = 0.
                                   Solution:
                                   By Charpit s method, auxiliary equations are
                                              dp       dq
                                                            = ...
                                           ( p p q ) 0  (p q )q

                                          dp  dq    p
                                                  or   c
                                           p   q    q
                                           2
                                          q  (1 + c) (cx + y)   1 = 0
                                                    1
                                   or     q =
                                               (1 c )(cx y )



          272                               LOVELY PROFESSIONAL UNIVERSITY
   274   275   276   277   278   279   280   281   282   283   284