Page 284 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 284

Unit 18: Charpit s Method for Solving Partial Differential Equations




          Solution:                                                                             Notes
          Here              f = pxy + pq + qy   yz = 0                            ... (1)
          Charpit s auxiliary equations are

                      dp         dq
                                        = ...
                   py   ( p y )  (px q ) qy
          or                         dp = 0    or    p = a                        ... (2)

          From (1) and (2), we get
                                                 ( y z ax )
                                      p = a, q =
                                                 a y
          Putting these values of p and q in dz = p dx + q dy, we get

                                                 ( y z ax )
                                     dz = a dx +        dy
                                                  a y

                                dz a dx    y dy       a
          or                            =        1        dy
                                 z ax      a y      a y

          Integrating,        log (z   ax) = y   a log (a + y) + log b
                                      y
                                  a
          or           (z   ax) (y + a)  = be .
                 Example 11: Solve by Charpit s method:
                 px + qy = z(1 + pq) 1/2 .
          Solution:

                                      f = px + qy   z (1 + pq) 1/2  = 0           ... (1)
          Charpit s auxiliary equations are

                  dp            dq
                                        = ...
              p p (1 pq ) 1/2  q q (1 pq ) 1/2
                             dp  dq
          or                           p = aq                                     ... (2)
                             p   q

          Putting in (1), we get
                                                 2 1/2
                                q (ax + y) = z (1 + aq )
                                 2
                          2
                                      2
          or             q  [(ax + y )  az ] = z 2
                                                  z                        az
                                      q =        2   2  1/2   and p = aq =   2  2 1/2
                                           [(ax y  ) az  )]          [(ax y  ) az  ]
          putting these values of p and q in dz = p dx + q dy,

                         ( z a dx dy )  dz   a dx dy
                 dz =               or
                       {(ax y ) 2  az 2 }  z  {(ax y ) 2  az 2 }




                                           LOVELY PROFESSIONAL UNIVERSITY                                   277
   279   280   281   282   283   284   285   286   287   288   289