Page 285 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 285

Differential and Integral Equation




                    Notes          Let    ax + y =  (a)u   a dx + dy =  (a) . du

                                          dz      a du     du    u 2  z 2 )
                                           z   (au 2  az 2  or   dz  z
                                                       )
                                   This is homogeneous equation. To solve it put u = vz, then

                                              dv  1
                                                      2 2
                                          v z       (v z  z 2  )
                                              dz  z
                                           dv      2
                                   or     z    { (v  1) v }
                                           dz
                                          dz      dv
                                   or            2
                                           z   (v  1) v
                                          dz      2
                                   or          { (v  1) v }dv
                                           z

                                                  v   2      1         2      v 2
                                          log z     [(v  1)]  log {v  (v  1)}    b
                                                  2         2                 2

                                                v  2  v  2   1         2
                                   or     log z       (v  1)   log{v  (v  1)} b  .
                                                2  2         2
                                                                  u  ax  y
                                   This is a complete integral, where  v
                                                                  z   z a


                                          Example 12: Solve by Charpit s method:
                                                        2
                                               2
                                           2
                                                           2
                                          (x    y ) pq   xy (p    q )   1 = 0.                             ... (1)
                                   Solution:
                                                           2
                                                        2
                                               2
                                           2
                                       f = (x    y ) pq   xy (p    q )   1 = 0
                                   Charpit s auxiliary equations are
                                                dp             dq              dx              dy
                                          2pqx z (p 2  q 2  )  2ypq x (p 2  q 2  )  (x 2  y 2 )y  2pxy  (x 2  y 2  )p  2pxy
                                   from which it follows that each fraction

                                                                    x dp y dq  p dx  q dy
                                                                 =
                                                                            0
                                           (x dp + p dx) + (q dy + y dq) = 0
                                   Integrating, px + qy = a
                                                                    a qy
                                                              p =                                          ... (2)
                                                                     x







          278                               LOVELY PROFESSIONAL UNIVERSITY
   280   281   282   283   284   285   286   287   288   289   290