Page 283 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 283

Differential and Integral Equation




                    Notes
                                             dp      dq      dx      dy
                                   or
                                           2p  2y   2q  2x  2x  2p  2y  2q
                                              dp dq         dx dy
                                   or
                                           2(p q x    ) y  2(p q x  ) y
                                   or     p + q = x + y + c

                                   or     (p   x) + (q   y) = c                                            ...(1)
                                   Also the given equation can be written as
                                                                          2
                                                                  2
                                                             (p   x)  + (q   y) = (x   y) 2                ...(2)
                                   Putting the value of (p   x) from (1) in (2)
                                                                          2
                                                                  2
                                                         {c   (q   y)}  + (q   y) = (x   y) 2
                                                                          2
                                                      2
                                                                  2
                                   or           2(q   y)    2c (q   y) + c    (x   y) = 0
                                                                            2
                                                         2c  [4c 2  8{c 2  (x y ) }]
                                                 q   y =
                                                                 2 2
                                                         c  1        2  2
                                                      =         x   ) y  c  },
                                                         2  2
                                                           1           2  2
                                                    q = y   [c     x   ) y  c  }]
                                                           2
                                                 p   x = c   (q   y)

                                                           1
                                                      = c   [c     x  ) y  2  c  2 }]
                                                           2

                                                           1           2   2
                                                    p = x    {c    x   ) y  c  }]
                                                           2
                                   Also we know that dz = p dx + q dy.

                                                     1           2  2        1           2  2
                                               = [x   {c     x   ) y  c  }]dx  [y  {c  x  ) y  c  ]}]dy
                                                     2                       2
                                                           c dx  c dy  1      2  2
                                               = x dx y dy            [ 2(x y )  c  } {dx dy }
                                                            2    2   2

                                                  x 2  y 2  cx  cy  1  2  2 dt          2   2
                                            Z =                   (t  c  )       if 2(x y )  t
                                                  2   2  2   2  2         2

                                                                1  t       c  2
                                                                      2 2
                                   or      2Z = x  2  y 2  cx cy     (t c  )  log{t  t  (t  2  c  2 )} k
                                                                2  2       2

                                          Example 10: Solve by Charpit s method:
                                          pxy + pq + qy = yz.






          276                               LOVELY PROFESSIONAL UNIVERSITY
   278   279   280   281   282   283   284   285   286   287   288