Page 281 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 281

Differential and Integral Equation




                    Notes          Putting this value in the given equation,
                                           2
                                     2zx   px    2axy + ap = 0.
                                                                    2
                                                    p = 2x (z   ay) / (x    a).
                                   Also            dz = p dx + q dy

                                                          x
                                                         2 (z ay )
                                                      =          dx + a dy
                                                          (x 2  ) a
                                             dz a dy      2x
                                   or                 =   2   dx
                                               z ay      x  a
                                                             2
                                   or       log (z   ay) = log c(x    a).
                                                           2
                                               (z   ay) = c (x    a).
                                                              2
                                                    z = ay + c(x    a) is the general solution.

                                          Example 7: Solve by Charpit s method:
                                                     2
                                                  2
                                                 p  + q    2px   2qy + 1 = 0.
                                   Solution:
                                   Applying Charpit s method,

                                             dp        dq
                                           F    F    F    F
                                              p         q
                                           x     z   y    z
                                           dp   dq
                                   i.e.                 i.e.   p = qa.
                                           2p   2q

                                   Substituting in the given equation,
                                           2
                                             2
                                          q  (a  + 1)   2q (ax + y) + 1 = 0.
                                             2(ax y )  [4(ax y  ) 2  4(a 2  1)]
                                          q =            2                    [taking +ve sign with the radical].
                                                       2(a  1)

                                             (ax y )  (ax y  ) 2  (a 2  1)]
                                          q =          2
                                                      (a  1)

                                   Now dz = p dx + q dy
                                              1                    1
                                                                              2
                                                                                  2
                                          =      (ax + y) (a dx + dy) +   [(ax + y)    (a  + 1)] (a dx + dy).
                                            (a  1)               (a  1)
                                   Now putting ax + y = t
                                          a dx + dy = dt
                                           2
                                                         2
                                                             2
                                          (a  + 1) dz = dt + [t    (a  + 1)] dt.




          274                               LOVELY PROFESSIONAL UNIVERSITY
   276   277   278   279   280   281   282   283   284   285   286